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• Emergence of large foundation models in many fields

• Unprecedented ability to understand, predict, and generate content

Opportunities from Foundation Models

Image model: DALL-E Video model: SoraLanguage model: GPT,

Llama

Q: Image (A potato king) Q: Video (A family of monsters)
A:A:
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A 3-hour tutorial about foundation AI models and EDA applications

1. Basic Large Language Model (LLM) Knowledge

• Ang Li (University of Maryland), 1-hour session

2. Multimodal Foundation Model + Efficiency of Foundation Model

• Wei Wen (Meta), 1-hour session

3. Using Foundation Models in EDA Applications

• Zhiyao Xie (HKUST), 1-hour session

Overview of This Tutorial
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Basic Large Language 
Model (LLM) Techniques

Ang Li, Assistant Professor, University of Maryland

Duration: ~1 hour



• Attention Models and Transformers

• Large Language Model Training

• Large Language Model Inference

Outline of Session 1
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• Attention Models and Transformers

•

•

Outline of Session 1
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• Recurrent models (e.g., LSTM, GRU) are unrolled from left to right
• Word pairs will have linear interaction distance

Problems:

• Hard to learn long-distance dependencies
• Gradient vanishing issue

• Hard to parallelization
• Forward and backward passes have O(sequence length) unparallelizable 

operations

Issue with recurrent models
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• Traditional encoder-decoder systems suffer from information bottleneck:

• Last hidden state need to capture all the information about the 
source sentence

Problems with classic Seq2Seq models
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• Attention mechanism provides a solution to the problem

• Core idea: at each decoding step, focus on different part
of the source sequence.

Solution: attention mechanism
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• Suppose we have encoder hidden states 𝑒1, … 𝑒𝑁 ∈ ℝℎ ,
step t decoder hidden state 𝑑𝑡 ∈ ℝℎ

• At decoding step t,

1. Compute the attention score

𝑠𝑡= [𝑑𝑡
𝑇𝑒1, … 𝑑𝑡

𝑇𝑒𝑁] ∈ ℝ𝑁

2. Apply softmax to get the attention distribution over source tokens

𝑤𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑡 ∈ ℝ𝑁

3. Compute weighted sum over the encoder hidden states

𝑎𝑡 = ෍

𝑖=1

𝑁

𝑤𝑖
𝑡𝑒𝑖 ∈ ℝℎ

4. Concatenate 𝑎𝑡 with 𝑑𝑡 ,and feed [𝑎𝑡; 𝑑𝑡] ∈ ℝ2ℎto the decoder

How to compute attention?
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• Attention can significantly improve neural machine translation (NMT) 
performance

• Allow decoder to focus on different parts of the source

• Solves the information bottleneck problem

• Attention helps with the vanishing gradient issue

• Provides shortcut to early source tokens

• Attention provides interpretability

• Implicitly learn soft alignment between source and target sequence

• Check the attention distribution for each output token

Why attention is so powerful?

D. Bahdanau, K. Cho, and Y. Bengio. "Neural machine translation by jointly learning to align and translate.” (2014)
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• Attention is also used in computer vision:

• Attend to different parts on input image when generating caption

• Attention can also be a basic building block for sequence modeling

• New sequence models: Transformers, BERT, GPT etc.

Attention as a general technique

Xu, Kelvin, et al.”Show, attend and tell: neural image caption generation with visual attention” ICML 2015
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• Remember attention is introduced in Seq2Seq systems to attend different parts 
of source sentence

• Self-attention: apply attention within a single sentence

• All words attend to all words in previous layer (most arrows are omitted)

Replace recurrent with self-attention

Credit: Stanford cs224n
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• To compute attention we need queries, keys, and values:
• Queries:  𝑞1, 𝑞2, … 𝑞𝑇 . Each 𝑞𝑖 ∈ ℝ𝑑

• Keys:       𝑘1, 𝑘2, … 𝑘𝑇 . Each 𝑘𝑖 ∈ ℝ𝑑

• Values:   𝑣1, 𝑣2, … 𝑣𝑇 . Each 𝑣𝑖 ∈ ℝ𝑑

• In self-attention, the queries, keys and values come from the same source

• 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑞𝑖 = 𝑄𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖

where 𝐾, 𝑄, 𝑉 ∈ ℝ𝑑×𝑑 are linear transformation used for all 𝑥𝑖

• Self-attention generate new representations as follows:

• score: 𝑠𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗 , attention: 𝑎𝑖𝑗 =

exp(𝑠𝑖𝑗)

σ𝑗′ exp(𝑠𝑖𝑗′)
 , output𝑖 = σ𝑗 𝑎𝑖𝑗𝑣𝑗

Self-attention computation

Credit: Stanford cs224n
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• Transformer structure:

• Two parts: encoder & decoder (Seq2Seq model)

• Basic block: self-attention + feed-forward

• Stacked multiple blocks

• Bunch of fixes/tricks

Transformer

Vaswani, Ashish, et al. “Attention is all you need” Neurips 2017
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• Previously for each word 𝑖, we compute (one) attention over the words:
• 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑞𝑖 = 𝑄𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖 where 𝐾, 𝑄, 𝑉 ∈ ℝ𝑑×𝑑

• score: 𝑠𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗 , attention: 𝑎𝑖𝑗 =

exp(𝑠𝑖𝑗)

σ𝑗′ exp(𝑠𝑖𝑗′)
, output𝑖 = σ𝑗 𝑎𝑖𝑗𝑣𝑗

• What if we want multiple attentions for each word?

• We can define multiple attention “heads” by multiple 𝐾, 𝑄, 𝑉 matrices

• Each head will look at different things and combine values differently!

• Define 𝐾𝑙 , 𝑄𝑙 , 𝑉𝑙 ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads

• For each head 𝑙: 𝑘𝑖
𝑙 = 𝐾𝑙𝑥𝑖 , 𝑞𝑖

𝑙 = 𝑄𝑙𝑥𝑖 , 𝑣𝑖
𝑙 = 𝑉𝑙𝑥𝑖

• Use 𝑘𝑖
𝑙, 𝑞𝑖

𝑙, 𝑣𝑖
𝑙 ∈ ℝ

𝑑

ℎ to compute score, attention and output𝑖
𝑙 ∈ ℝ

𝑑

ℎ

• Combine all attention head outputs: output𝑖 = 𝑊𝑜[output𝑖
1; … ; output𝑖

ℎ] where 𝑊𝑜 ∈ ℝ𝑑×𝑑

Multi-head self-attention
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• Self-attention operation doesn’t consider the order information 

• Simple fix: we can represent the sequence index as a vector

• Define positional embedding 𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ 1, 2, … , 𝑇

• Suppose 𝑒𝑖 ∈ ℝ𝑑, for 𝑖 ∈ 1,2, … , 𝑇 are the word embeddings, then we can add the positional 
embedding at layer 0: 𝑥𝑖

0 = 𝑒𝑖 + 𝑝𝑖

• Options:

• Sinusoidal position embedding:

• Learned position embedding: 

Just make all 𝑝𝑖 as learnable parameters

Encode sequence order
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• To use self-attention in decoders, we need to 

ensure the decoder cannot peek the future

• Simple fix: we can mask the attention to future 

words by setting attention score as −∞:

𝑠𝑖𝑗 = ൝
𝑞𝑖

𝑇𝑘𝑗 ,  𝑗 < 𝑖

−∞,  𝑗 ≥ 𝑖

Transformer decoder: self-attention

[start]

The

boy

want

[start]   The    boy  want 
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• In self-attention, keys, queries and values 

come from the same source

• However, on the decoder side, besides self-

attention we also want to attend the states 

from encoder (Seq2Seq model)

• Simple fix: construct keys and values using 

encoder states

• Define 𝑥1, … 𝑥𝑇 ∈ ℝ𝑑 as the output 

vectors from the encoder

• Define ℎ1, … ℎ𝑁 ∈ ℝ𝑑 as the input vectors 

from the decoder

• Compute key, value, query by:

 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖 , 𝑞𝑖 = 𝑄ℎ𝑖

Transformer decoder: encoder-attention
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• Residual connection and layer normalization: 

• Add after multi-head attention and feed-
forward modules

• Help models train faster 

• Learning rate schedule:

• warm-up stage: learning rate first increase 
then decrease

• Converge to better sub-optimal

Other tricks in Transformer

Ba, Jimmy Lei, et al. “Layer normalization”
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• Transformer is originally designed for language translation task

• Encoder takes a sentence in language A

• Decoder generates a sentence in language B

Encoder – Decoder Transformer
Architecture

https://www.datacamp.com/tutorial/how-transformers-work
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• T5 (Text-to-Text Transfer Transformer)

• Translate text between languages designed by Google in 2019 

• The T5 can be fine-tuned for a wide range of NLP tasks, including language 
translation, question answering, summarization, and more.

Encoder - Decoder Transformer Model

Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer [Raffel et al., 2019]
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• Encoder-only Transformers are specifically designed for text classification 
tasks.

• Classify a piece of text into one of several predefined categories.

• Examples: Sentiment Analysis, Topic Classification, Spam Detection

• Encoding Process:

• The encoder processes a sequence of tokens from the text.

• It produces a fixed-size vector representation (embedding) of the entire 
sequence.

• This vector encapsulates the meaning and context of the text.

• The representation is then used for classification by downstream classifiers

Encoder Transformer Architecture
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• BERT (Bidirectional Encoder Representations from Transformers)
• bidirectionally trained language models can have a deeper sense of language 

context and flow than single-direction.

Encoder Transformer Model

https://www.analyticsvidhya.com/blog/2021/12/manual-for-the-first-time-users-google-bert-for-text-classification/

• Pre-training Tasks:
– Masked LM (MLM)

Predicts the original values of randomly 
masked tokens within a sequence

– NSP (Next Sentence Predict)
Predicts if the second sentence in a pair is 
the subsequent sentence of the first one
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• Decoder-only Transformers are designed for text generation tasks.
• Takes a fixed-size vector representation of the context.

• Generates a sequence of words one at a time.

• Each word is conditioned on all previously generated words.

• Pre-trained model can be fine-tuned to downstream tasks

Decoder Transformer Architecture

Improving Language Understanding by Generative Pre-Training [Radford et al., 2018]
25



• GPT (Generative Pre-trained Transformer)

• Masked Attention

blocking information from tokens that are to 
the right of the position being calculated.

Decoder Transformer Model

https://jalammar.github.io/illustrated-gpt2/
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Scaling up of LLMs

https://labelyourdata.com/articles/llm-model-size
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•

• Large Language Model Training

•

Outline of Session 1
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LLM Training

Massive

Unlabele

d Dataset

Narrow

Labeled

Dataset

Human

rank of response

Pre-Training
Instruction

Fine-Tuning

Reinforcement Learning with

Human Feedback (RLHF)

Objective:

predict

next word

Objective:

response to

queries

Objective:

predict

human rank

Objective:

high quality

response

Reward

Model
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Pre-Training

Training objective: Predict Next Token (self-supervised learning)
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Pre-Training

Training objective: Predict Next Token (self-supervised learning)

Examples:

• Text in dataset: LLMs are cool.

• Input token: LLM #s are

• LLM output: probabilities of tokens

• Objective: maximize the predict probability

of correct token “cool”.



Pre-Training

Training objective: Predict Next Token (self-supervised learning)

Examples:

• Text in dataset: LLMs are cool.

• Input token: LLM #s are

• LLM output: probabilities of tokens

• Objective: maximize the predict probability

of correct token “cool”.

Loss function (Tokens 𝑢𝑖, Parameters Θ)

𝐿 𝑢 = − ෍

𝑖

𝑙𝑜𝑔𝑃(𝑢𝑖|𝑢𝑖−𝑘 , … , 𝑢𝑖−1; Θ)



Pre-Training

• Training dataset: unlabeled large scale corpora

• Trillions of token (e.g. 2 trillions for Llama 2)

• Text crawled from website, github, Wikipedia….
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Pre-Training

• Training dataset: unlabeled large scale corpora

• Trillions of token (e.g. 2 trillions for Llama 2)

• Text crawled from website, github, Wikipedia….

• Pre-training is the most expensive stage

• Llama 2 trained with A100 GPUs

• Pre-trained LLMs learn the knowledge from large scale corpora

• Has ability of reasoning, coding, summary, math…
34



Instruction Fine-Tuning

• Instruction Fine-Tuning (a.k.a. supervised fine tuning, or SFT)

• Training objective: Response according to queries (supervised learning)

• Example of (domain-/task-specific) dataset:
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Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

36



Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

• Dataset: Initial stage: publicly available instruction tuning dataset

Later: high quality dataset
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Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

• Dataset: Initial stage: publicly available instruction tuning dataset

Later: high quality dataset

• E.g., Fine-tuned LLMs generate output considering helpfulness and safety

38



Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)
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Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text
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Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text

• Training dataset:

• Each input prompt with two

generated text, one is chosen by

human, one is rejected by human
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Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text

• Loss function:

• 𝑥: prompt text, 𝑦: generated text 

(chosen 𝑦𝑐 or rejected 𝑦𝑟),

• 𝑟𝜃: output of reward model based 

on parameters. 42



Reinforcement learning with human
feedback (RLHF)

• ChatGPT collecting training dataset from user
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What is Reinforcement Learning (RL)

• In reinforcement learning, the goal is to learn the model parameters 

that maximize a "reward function."

• The model, often referred to as the agent in RL, generates outcomes 

based on its current parameters, and with each outcome, the agent 

receives a reward.

• This reward can be positive, indicating a favorable result, or negative, 

discouraging poor predictions.

• The agent learns sequentially by generating outcomes, receiving 

feedback through rewards, and refining its parameters accordingly.

• Parameters are adjusted to make highly-rewarded outcomes more 

likely, enabling the agent to improve over time.

• The ultimate objective is to reinforce actions that lead to successful 

outcomes while discouraging those that do not. 44



Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model
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Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for 

the generated output
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Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for 

the generated output

• Using RL algorithm for training

• Proximal Policy Optimization (PPO)
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Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for 

the generated output

• Using RL algorithm for training

• Proximal Policy Optimization (PPO)

• Get a LLM that aligns human value
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Performance comparison of pre-trained
and finetuned

Pre-trained model leaderboard Fine-tuned (with RLHF) model leaderboard

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Finetuned models show better performance in most benchmarks.
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• PEFT: Fine-tune large pre-trained models for specific tasks while 

updating only a small subset of the model's parameters.

• Why PEFT

• Produce customized LLMs on specific tasks

• LLMs are too expensive to finetune

• By modifying fewer parameters, preserve the model's general 

knowledge while adapting to specific tasks.

Parameter Efficient Fine Tuning (PEFT)
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• Small neural network modules inserted into a pre-trained model.

• Inserted after the attention and/or feed-forward layers

• Freeze other parameter and only train adapter

• A bottleneck architecture module

• a down-projection layer

• a non-linearity layer

• an up-projection layer

PEFT - Adapter

51



• Traditional pretraining fine-tuning:

• Pretrain W, Finetune W

• LORA (Low Rank Adaptation):

• Pretrain W, Finetune AB

• AB are low-rank matrices, rank(A) << rank(W)

• Benefit: 

• light-weight fine-tuning cost

• Fast domain adaptation without additional serving cost

PEFT - LoRA

latency

LoRA, [Edward J. Hu et al., 2021]
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• QLoRA : LoRA with quantized base model weights

• NormalFloat (NF4) datatype for LLM weight quantization

• CPU-offloading for optimizer state

• Reduce memory usage significantly

PEFT - QLoRA
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• Prompt : tell the LLM what to do in natural language

• Prompt engineering : Identify suitable prompt for a specific task

• General rule of thumb

• write clear and descriptive instructions

• Split complex task into simpler subtasks

Prompt Engineering
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• Chain of thought prompting

• Ask the model to work step-by-step

Prompt Engineering
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Prompt Tuning

• From discrete prompt to continuous trainable prompt

• learning a small set of continuous task-specific vectors (called "soft 

prompts") that are prepended to the input sequence.

• Extremely parameter-efficient (often <0.1% of model parameters).
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•

•

• Large Language Model Inference

Outline of Session 1
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• Loading Weight to GPU

• Tokenizing the input text sequence (Prompt)

• Prefill Phase

• Decoding Phase 

• Detokenize output tokens

LLM Inference Procedure

Pierre Lienhart, Medium. https://medium.com/@plienhar/llm-inference-series-2-the-two-phase-process-behind-llms-responses-1ff1ff021cd5

Key Phases
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• Loading Weight to GPU

• LLaMa-2-7B (FP32 ~ 28GB)

• Tokenizing the input text sequence (Prompt)

• Tokenizer breaks down text into tokens (e.g word, subword,characters)

• Tokens are converted into vectors that model can understand

• Text -> tokens -> vector

LLM Inference Procedure

OpenAI. https://platform.openai.com/tokenizer

[3923, 374, 445, 11237, 45478, 30]

What is LLM inference?
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• Tokenization is the process of dividing text into smaller units called tokens, which are 
typically words or sub-words.

• Tokens are mapped to vectors for use in neural networks. 

Two Approaches :

• Top-Down (Rule-based tokenization) uses predefined rules to segment text into tokens, 
typically based on grammar and syntax, e.g., splitting sentences at punctuation marks or spaces.

• Bottom-up (Subword tokenization) breaks down words into smaller units, such as subwords or 
characters, allowing for the handling of unknown words and variations, e.g., Byte Pair Encoding 
used in BERT and GPT.

Tokenization

Tokenization is an important step . [SEP]

Tokenization is an important step.
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Byte Pair Encoding is a compression-based tokenization method that iteratively 
merges the most frequent character pairs to create subword units. 

Step 1: Start with a vocabulary containing the individual characters present in the training 
corpus.

Step 2: Examine the training corpus and identify the two most frequently adjacent symbols. 

Step 3: Add a new merged symbol representing the combined pair to the vocabulary. 
Replace every instance of the adjacent pair in the corpus with the new merged symbol.

Step 4: Continue counting and merging the most frequent pairs. Repeat until you've 
performed k merges, resulting in k novel tokens.

Step 5: The final vocabulary consists of the original set of characters plus the k new 
symbols created through merging.

Byte-Pair Encoding

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
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Byte-Pair Encoding

https://colab.research.google.com/github/catalyst-team/dl-course/blob/master/week-09/seminar_done.ipynb 62



• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the 
LLM Model to generate the first token

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237 
45478

30

LLM 92

Prefill Phase
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• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the 
LLM Model to generate the first token

• Decoding Phase (Multi-step Phase)

• Appending the generated token to the 
sequence of input tokens and using it as a 
new input to generate the next token

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237 
45478

30

LLM 92

...
374
445

11237 
45478

30
92

LLM 11202

Prefill Phase

Decoding Phase

#1
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• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the 
LLM Model to generate the first token

• Decoding Phase (Multi-step Phase)

• Appending the generated token to the 
sequence of input tokens and using it as a 
new input to generate the next token

Repeat decoding until meeting a stopping criteria 
• Generating end-of-sequence token

• Reaching maximum sequence length

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237 
45478

30

LLM 92

...
374
445

11237 
45478

30
92

LLM 11202

...
445

11237 
45478

30
92

11202

LLM 3370

Prefill Phase

Decoding Phase

#1

#2

...
#N 65



• Inference - Fewer request, offline traffic, latency

Take a series of tokens as inputs, and generate subsequent tokens 
autoregressively until they meet a stopping criteria

• Prefill Phase (Process the input)

• Decoding Phase (Generate the output)

• Serving - Many requests, online traffic, cost-per-query

• Co-locate the two phases and batch the computation of prefill 
and decoding across all users and requests

LLM Inference Scenarios
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Break



Multimodal Representation 
and Efficiency of 
Foundation AI Models

Wei Wen, Research Scientist, Meta

Duration: 1 hour



• Multimodal Representation Techniques

• Multimodal Taxonomy

• Multimodal Understanding

• Multimodal Generation

• Efficiency of Large Foundation Models

• Quantization

• Low rank

• Sparsity / pruning

• Parallelism

• Linear-Time Sequence Modeling

69
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• Multimodal Taxonomy in this Tutorial
• Image Understanding: image & text in, text out

• Image Generation: image & text in, image & text out

• Multimodal Understanding
• Modeling: Llava, Flamingo, etc

• Vision Encoders: CLIP, MetaCLIP

• Multimodal Generation
• Autoregressive multimodal generation

• Diffusion and Modeling Unification

Multimodal Representation Techniques
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• Multimodal Taxonomy in this Tutorial
• Image Understanding: image & text in, text out

• Image Generation: image & text in, image & text out

•

•

•

•

•

•

Multimodal Representation Techniques
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Multimodal Taxonomy in this Tutorial

• Focus on image and text modes only

Core Model

Text Image

Text

Core Model

Text Image

TextImage

• ChatGPT 4o Image Generation• Classification

• VQA

• Captioning 

• Any tasks in text as outputs

Understanding Generation
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•

•

•

• Multimodal Understanding
• Modeling: Llava, Flamingo, etc

• Vision Encoders: CLIP, MetaCLIP

•

•

•

Multimodal Representation Techniques
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Multimodal Understanding -- Modeling

Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2023). Visual instruction tuning. Advances in neural 

information processing systems, 36, 34892-34916.

• Mainstream model architecture
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Multimodal Understanding -- Flamingo

Alayrac, J. B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., ... & Simonyan, K. (2022). Flamingo: a visual language model for few-shot 

learning. Advances in neural information processing systems, 35, 23716-23736.
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• CLIP: Align image representations to text semantics

Multimodal Representations -- CLIP

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual 

models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PmLR. 76



• MetaCLIP: 
• More transparent data curation 

with better models

• “Released our training data 
distribution”

Multimodal Representations -- MetaCLIP
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•

•

•

•

•

•

• Multimodal Generation
• Autoregressive multimodal generation

• Diffusion and Modeling Unification

Multimodal Representation Techniques
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Multimodal Generation – Autoregressive 
Generation 

Team, C. (2024). Chameleon: Mixed-modal early-fusion foundation models. arXiv

preprint arXiv:2405.09818.
79



Image Tokenization: VQ-VAE

Van Den Oord, A., et al., (2017). Neural discrete representation learning. NeurIPS. 
80



Image Tokenization: VQ-GAN

Esser, P., et al., (2021). Taming transformers for high-resolution image synthesis. CVPR. 81



Diffusion and Modeling Unification

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M., Shamis, L., ... & Levy, O. (2024). Transfusion: Predict the next token 

and diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039.
82



Text Diffusion (and Multimodal Diffusion)
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• Quantization
• QAT, Post-training Quantization, QLoRA, FP8 training

• Low rank
• LoRA

• Sparsity / pruning
• Non-structured, structured, 2:4, MOE

• Parallelism
• Parallel decoding: Speculative Decoding, Text Diffusion

• Parallel Training: TP, PP, EP, CP, DP

• Linear-Time Sequence Modeling
• Linear Transformer, xLSTM, Mamba 

Efficiency of Large Foundation Models
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• Quantization
• QAT, Post-training Quantization, QLoRA, FP8 training

•

•

•

•

•

•

•

•

•

Efficiency of Large Foundation Models
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Efficiency targeted phases

• Training efficiency: FP8 training 

• Fine-tuning efficiency: QLoRA

• Inference efficiency:

• Quantization-aware training

• This is the go-to approach if accuracy is more important

• Edge models are relatively small in practice, so the cost is acceptable 

• Straight-Through Estimator with grouping is a very strong baseline

• Post-training Quantization

• SpinQuant, SmoothQuant

Quantization for Efficiency – Taxonomy 
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• Numerical bias

• Deterministic rounding – bias in a quantization group, minimal/no bias 
in the final logit?

• Stochastic rounding – no bias

• Numerical variance

• Key problem!

• Research focus: variance reduction

• Constraining outlier scale

• Grouping – if your group size is 1, quantization is floating-precision

• A small group size (e.g. 32) can significantly reduce variance with 
minimal overhead

Quantization – Basics 
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• Clipping

• Random rotation

• Rescaling

• ……

Quantization – Outlier Constraint
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Quantization – Outlier Constraint: 
Clipping

Wen, W., et al., (2017). Terngrad: Ternary gradients to reduce communication in distributed deep learning. NeurIPS.

• TernGrad: layer-wise clipping + grouping
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Quantization – Outlier Constraint: 
Rotation

Liu, Z., et al., (2024). Spinquant: LLM quantization with learned rotations. arXiv:2405.16406.
90



Quantization – Outlier Constraint: 
Rescaling

Xiao, G.,et al., (2023). Smoothquant: Accurate and efficient post-training quantization for large language models. ICML. 91



•

•

• Low rank
• LoRA

•

•

•

•

•

•

•

Efficiency of Large Foundation Models
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Low-rank + Quantization for Fine-tuning: 
QLoRA

Dettmers, T., et al., (2023). Qlora: Efficient finetuning of quantized LLMs. NeurIPS. 93



•

•

•

•

• Sparsity / pruning
• Non-structured, structured, 2:4, MOE

•

•

•

•

•

Efficiency of Large Foundation Models
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• Non-structured sparsity
• Less popular because of computation inefficiency 

• Structured sparsity
• Remove weights group by group

• Structured in a way with high compute efficiency

• E.g. NVIDIA 2:4 sparsity 

Sparsity / Pruning -- Patterns

Wen, W., Wu, C., Wang, Y., Chen, Y., 

& Li, H. (2016). Learning structured 

sparsity in deep neural 

networks. Advances in neural 

information processing systems, 29.

https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/
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• Thresholding

• Regularization

• Optimizer

Sparsity / Pruning -- Methods
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SparseGPT

Frantar, E., & Alistarh, D. (2023, July). Sparsegpt: Massive language models can be accurately pruned in one-shot. 

In International Conference on Machine Learning (pp. 10323-10337). PMLR.
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Natively Sparse Models: Mixture of 
Experts

Fedus, W., Zoph, B., & Shazeer, N. (2022). Switch transformers: Scaling to trillion parameter models with simple 

and efficient sparsity. Journal of Machine Learning Research, 23(120), 1-39. 98



•

•

•

•

•

•

• Parallelism
• Parallel decoding: Speculative Decoding, Text Diffusion

• Parallel Training: TP, PP, EP, CP, DP

•

•

Efficiency of Large Foundation Models
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• Parallel decoding

• Speculative Decoding

• Text Diffusion

• Parallel Training

• Data parallelism

• Vanilla 

• ZeRO / FSDP sharding

• Model parallelism

• Tensor parallelism

• Pipeline parallelism

• Context parallelism

• Expert parallelism

Parallelism
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Speculative Decoding

https://research.google/blog/looking-back-at-speculative-decoding/ 101



102

Follow-up works: 

MEDUSA, EAGLE



Data Parallelism – ZeRO (in DeepSpeed)

Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2020, November). Zero: Memory optimizations toward training trillion parameter 

models. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-16). IEEE. 103



• Fully Sharded Data Parallel (FSDP) -- A PyTorch implementation 

Data Parallelism – FSDP

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
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Model Parallelism

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., ... & Zaharia, M. (2021, November). Efficient large-scale 

language model training on gpu clusters using megatron-lm. In Proceedings of the international conference for high performance computing, 

networking, storage and analysis (pp. 1-15). 105



•

•

•

•

•

•

•

•

•

• Linear-Time Sequence Modeling
• Linear Transformer, xLSTM, Mamba 

Efficiency of Large Foundation Models
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Linear-Time Sequence Modeling – Linear 
Transformer

Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-attention 

with linear complexity. arXiv preprint arXiv:2006.04768. 107



Linear-Time Sequence Modeling – Mamba

Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.
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• xLSTM: Extended Long Short-Term Memory

Linear-Time Sequence Modeling – xLSTM
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Break



Application of Foundation 
Models in EDA

Zhiyao Xie, Assistant Professor, HKUST

Duration: ~1 hour



Challenges in Delivering Better Chips

IC Design Cost is Skyrocketing

(Not including manufacturing)

Increasing IC design complexity

Apple A15

15B transistors

Apple A11

4B transistors

Apple M3 Max

92B transistors

IC complexity

• Increasing IC design cost

• Increasing time to market
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How AI Assists EDA - Our Taxonomy

Type I: Supervised Predictive AI Techniques for EDA

Type II: Foundation AI Techniques for EDA 

(Circuit Foundation Model)
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How AI Assists EDA - Our Taxonomy

Type I: Supervised Predictive AI Techniques for EDA
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Explorations in Predictive AI Methods

• Predictive AI supports many applications: both early evaluation & optimization

• Explored in academia & industry, cover all stages

[1] Machine learning for electronic design automation: A survey. ACM TODAES, 2021.

[2] MLCAD: A survey of research in machine learning for CAD keynote paper. IEEE TCAD, 2021.
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Predictive AI for EDA/Circuit Design

……

Metrics (bad)

Metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatedly from scratch

• Why not learn from prior solutions? More intelligence!

N iterations

*Source: Kahng et al., VLSI physical design
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Predictive AI for EDA/Circuit Design

Metrics (bad)

Metrics (good)

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

• Why not learn from prior solutions? More intelligence!

• ML in Electronic Design Automation: Early Timing and Power Modeling

N iterationsVerilog

117

Fast & high-fidelity ML prediction
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Example: Timing & Power Evaluation of
RTL Code?

• Given an RTL, can we directly evaluate its timing and power?

• Fine-grained timing: slack per register

• Fine-grained power: per-cycle power



• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

•

•

119

Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction 



• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

• Guide optimization during synthesis

• Guide retime and path_group
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Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction Better post-opt timing distribution



• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

• Guide optimization during synthesis

• Guide retime and path_group
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Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction Better post-opt timing distribution

Key idea: learn the pattern of input RTL logic



• Per-cycle power model at RTL
•

•

•
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Case 2: Efficient Power Model at RTL-Stage

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)



• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

•
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Case 2: Efficient Power Model at RTL-Stage

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)



• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

• Low-cost & accurate on-chip power model
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Case 2: Efficient Power Model at RTL-Stage

Small OPM in CPU layout (pink)

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)



• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

• Low-cost & accurate on-chip power model
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Case 2: Efficient Power Model at RTL-Stage

Small OPM in CPU layout (pink)

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)

Key idea: capture most power-related RTL signals



Type I: Supervised Predictive AI Techniques for EDA

• Difficulty in getting sufficient labeled data

• Time-consuming AI model development process

• Lack of generalization across tasks

How AI Assists EDA - Our Taxonomy
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Opportunities from Foundation Models

• Emergence of large foundation models in many fields

• Unprecedented ability to understand, predict, and generate content

Image model: DALL-E Video model: SoraLanguage model: GPT

Q: Image (A potato king) Q: Video (A family of monsters)
A:A:

127



Trend of AI in all fields:

Task-specific → General

Small data → Big data

Supervised → Unsupervised

Single-modality → Multimodal

Why no counterpart in AI for chip design?
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Trend of AI in all fields:

Task-specific → General

Small data → Big data

Supervised → Unsupervised

Single-modality → Multimodal

Why no counterpart in AI for chip design?

129
Circuit Foundation Model (CFM)



Type II: Foundation AI Techniques for EDA 

(Circuit Foundation Model)

Paradigm 1: Encoder-based circuit foundation models

Paradigm 2: Decoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy
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Rethink Circuits from Data Perspective

• Chip is a delicate structured implementation of functionality

• Minor structure change (flipping a gate) drastically affect functionality

• Chip is inherently multi-stage and multi-modality:

• Different level of details across stages

• Lack of chip data:

• The most important IP/asset

• No companies share their chip design
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Paradigms of AI for EDA Techniques

132

[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711. 



Encoder-based circuit foundation model
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[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711. 



Decoder-based circuit foundation model
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[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711. 



Type II: Foundation AI Techniques for EDA 

(Circuit Foundation Model)

Paradigm 1: Encoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy
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Encoder-based circuit foundation model

DeepGate

DeepGate2

FGNN

HOGA

DeepGate3 PolarGate

DeepSeq

Circuit
Encoder

NetTAGDeepCell

ProgSG

Design2Vec

Circuit
Encoder

Circuit
Fusion

DeepGate4

TAG

LLM-HD

HARP
SNS v2

MGVGA

R
TL

H
LS

La
yo

u
t

Open-Source

Close-Source

2025

2024

2023

2022

2021

N
e

tl
is

t

Encoder-Based

Circuit 
GNN

GAMORA

136



Encoder Model at RTL Stage
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Multimodal Representation Learning, on RTL?

• Encode & fuse information from diverse modalities

• Vision-language

• Graph-language

• Software-graph

• ……

• Can we fuse multiple circuit modalities to learn better circuit 
representation?  
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Summary of Circuit Modalities

• Multimodal nature of RTL-stage circuits

HDL 

Code

semantic structure

Functionality 

Summary

Structure

Graph
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RTL Circuit Encoder: CircuitFusion

• Pre-Training: Multimodal circuit encoder (unsupervised) training

1. Learn to recognize masked circuit elements

2. Learn to recognize circuits with the same functionality

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25. 

Unsupervised 

contrastive learning

140

A multimodal 

circuit encoder

An RTL

(sub-)circuit

The encoder converts RTL into a general embedding



RTL Circuit Encoder: CircuitFusion

• Pre-Training: Multimodal circuit encoder (unsupervised) training

1. Learn to recognize masked circuit elements

2. Learn to recognize circuits with the same functionality

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25. 

Unsupervised 

contrastive learning

141

The multimodal 

circuit encoder



Preprocessing: Split Circuit to Sub-circuits 

• Circuit Property 1: parallel execution

• Combinational logic calculates simultaneously

• Sequential registers are updated only at each clock cycle

• Strategy 1: sub-circuit generation 

• Split based on register cones

• Backtrace all combinational input logic

• Advantages

• Consistency in Modality & stage

• Complete state transition of 1 cycle

• Intermediate granularity
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CircuitFusion Pre-Training (1/2)

• Circuit Property 2: functional equivalent transformation

• Circuit w. similar function may have different structures

• Strategy 2: semantic-structure pre-training

• Self-supervised Task #1-3 for each modality and multimodal fusion

143



CircuitFusion Pre-Training (2/2)

• Circuit Property 3: multiple design stages

• RTL (high-level semantics) → netlist (low-level details)

• Strategy 3: implementation-aware alignment

• Pre-training with netlist encoder across design stage (Task #4)
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Design Quality Prediction Tasks at RTL

• High performance on RTL-stage PPA prediction:

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25. 



Encoder-based circuit foundation model
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Encoder Model at Netlist Stage
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Multimodal Circuit Learning: RTL vs Netlist

• Multimodal learning: fuse information from diverse modalities

• Vision-language

• Software-graph

• ……

• Multimodal learning on RTL

• Register-transfer level (RTL)

• Earlier stage → more semantic

• Fuse 3 RTL modalities at register level

• Multimodal learning on netlist？
• Gate-level netlists

• Later stage →more structure

• Should fuse at gate level
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NetTAG: A Multimodal Netlist Encoder

• Netlist functional and physical properties in text-attributed graph

• Multimodal preprocess: formulate netlist as text-attributed graph

• Multimodal model: fuse gate text (LLM) with circuit graph (GNN)

• Multimodal pre-train: self-supervised and cross-stage-aware

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25. 
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NetTAG Framework Overview

1. Preprocessing → 2. Pre-Training → 3. Fine-Tuning
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2. Self-Supervised Pre-Training

• Two-phase encoding → Two-step pre-training

• Capture netlist functional and physical properties

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25. 
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2. Self-Supervised Pre-Training (1/2)

• Step 1: Enhancing logic understanding in ExprLLM

• Goal 1: Differentiate gate expression functionality

• Objective # 1: Symbolic expression contrastive learning

• Build gate expression dataset
• 2-hop symbolic expressions

• Boolean equivalence transformation rules
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2. Self-Supervised Pre-Training (2/2)

• Step 2: Fusion in TAGFormer & Cross-Stage Align
• Goal 2: Training within TAGFormer for semantic and structure fusion

• Objective # 2.1: Masked gate reconstruction

• Gate-level

• Predict masked gate type to capture gate structure

• Objective # 2.2: Netlist graph contrastive learning 

• Circuit-level

• Differentiate graph functionality

• Objective # 2.3: Netlist graph size prediction

• Circuit-level

• Predict gate count to capture graph structure
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Applications of NetTAG: 4 tasks

• Task 1: Combinational gate function identification

• Identify functional type (e.g., adder, multiplier) of each gate 

• Task 2: Sequential state/data register identification

• Differentiate state registers and data path registers for each register

• Task 3: Endpoint register slack prediction

• Predict layout timing slack of each register

• Task 4: Overall circuit power/area prediction

• Predict layout power and area of the whole design
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NetTAG Results & Discussion

• Scalability 

• Performance per task all scale
up with model and data

• Demo
• Reasoning the netlist arithmetic function

• Next step: NetTAG-LLM alignment1 for 
generative reasoning

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25. 
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Type II: Foundation AI Techniques for EDA 

(Circuit Foundation Model)

Paradigm 2: Decoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy
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Decoder-based circuit foundation model
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LLMs Enable Many Generative Applications
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Decoder-based circuit foundation model
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Generative AI: LLM for RTL Generation

• Input: natural language description

• Target design functionality.

• Module names, I/O names.

• Output: design in RTL code

Task: LLM-based RTL Generation

160

Image from Yongan Zhang, et al., MG-Verilog [LAD’24] 
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• LLM for hardware code optimization, debugging, verification, …

In addition to hardware code generation:



Benchmarking LLM for RTL Generation
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50 design 
problems

Four categories
1. Arithmetic Modules 

2. Memory Modules

3. Control Modules 

4. Miscellaneous 
Modules 

Example:
RTLLM2.0



Using commercial LLMs → circuit privacy concerns

1. Prompt engineering on commercial LLMs.

Using open-source LLMs → allows local deployment

2. LLMs fine-tuned on private datasets with instruction-code pairs

3. LLMs fine-tuned on open datasets with code only

4. LLMs fine-tuned on open datasets with instruction-code pairs

Challenge: How to get the dataset?
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LLM for RTL Generation Methodologies



Basic flow using prompt engineering

• Input specification + structure analysis and design principles (in prompt)

• Feed prompt into LLMs → RTL code

• Incorporate the feedback from EDA tools into the flow for rewriting
164



Generation of RTL Code Dataset

• Data generation flow of RTLCoder, as an example

• Other works adopt similar methodologies for dataset generation 

1. Generate diverse instructions (design specifications) 

2. Generate high-quality reference code

3. Collect the instruction-code pairs for (supervised) fine-tuning
165

[1] RTLCoder: Fully Open-Source and Efficient LLM-Assisted RTL Code Generation Technique, TCAD’25. 



Performance in RTL Generation
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Other Directions Besides Code Generation

In addition to LLMs for Hardware (RTL or HLS) Generation:

• LLMs for Hardware (Code) Optimizations 

• LLM for Hardware (Code) Verification

• LLMs for Hardware (Code) Security

• …

• LLM for Design Flow Automation 

• LLM for Layout Design

• LLM for Analog Design
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Challenges & Room for Improvement

1. Circuit Foundation Model Generalization and Scalability

2. Circuit Data Availability

3. Bridging the Gap Between Circuit Encoder and Decoder 
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Lack of Circuit? Generate Synthetic Circuits

[1] Towards Big Data in AI for EDA Research: Generation of New Pseudo Circuits at RTL Stage, ASPDAC’25

[2] SynCircuit: Automated Generation of New Synthetic RTL Circuits Can Enable Big Data in Circuits, DAC’25

• Solution: Generate synthetic pseudo-circuits for foundation model training

Synthetic 

designs are

similar to

real designs
Pseudo-designs can boost AI

accuracy in IC prediction

Synthetic 

designs reach

>100K cells

• Real circuit designs are private

• Synthetic circuit generation based 

on graph generation models

• Synthetic circuits enable “big data”
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Bridging the Gap Between Circuit 
Encoder and Decoder 

• An Encoder-Decoder framework with connectors
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Takeaway: Paradigms of AI for EDA
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