
DAC Tutorial:

Introduction to Foundation AI
Model and Its EDA Applications

Speaker:

Prof. Ang Li, University of Maryland, College Park

Dr. Wei Wen, Meta

Prof. Zhiyao Xie, HKUST

Host:

Prof. Xiaoxuan Yang, University of Virginia

• Emergence of large foundation models in many fields

• Unprecedented ability to understand, predict, and generate content

Opportunities from Foundation Models

Image model: DALL-E Video model: SoraLanguage model: GPT,

Llama

Q: Image (A potato king) Q: Video (A family of monsters)
A:A:

2

A 3-hour tutorial about foundation AI models and EDA applications

1. Basic Large Language Model (LLM) Knowledge

• Ang Li (University of Maryland), 1-hour session

2. Multimodal Foundation Model + Efficiency of Foundation Model

• Wei Wen (Meta), 1-hour session

3. Using Foundation Models in EDA Applications

• Zhiyao Xie (HKUST), 1-hour session

Overview of This Tutorial

3

Basic Large Language
Model (LLM) Techniques

Ang Li, Assistant Professor, University of Maryland

Duration: ~1 hour

• Attention Models and Transformers

• Large Language Model Training

• Large Language Model Inference

Outline of Session 1

5

• Attention Models and Transformers

•

•

Outline of Session 1

6

• Recurrent models (e.g., LSTM, GRU) are unrolled from left to right
• Word pairs will have linear interaction distance

Problems:

• Hard to learn long-distance dependencies
• Gradient vanishing issue

• Hard to parallelization
• Forward and backward passes have O(sequence length) unparallelizable

operations

Issue with recurrent models

7

• Traditional encoder-decoder systems suffer from information bottleneck:

• Last hidden state need to capture all the information about the
source sentence

Problems with classic Seq2Seq models

8

• Attention mechanism provides a solution to the problem

• Core idea: at each decoding step, focus on different part
of the source sequence.

Solution: attention mechanism

9

• Suppose we have encoder hidden states 𝑒1, … 𝑒𝑁 ∈ ℝℎ ,
step t decoder hidden state 𝑑𝑡 ∈ ℝℎ

• At decoding step t,

1. Compute the attention score

𝑠𝑡= [𝑑𝑡
𝑇𝑒1, … 𝑑𝑡

𝑇𝑒𝑁] ∈ ℝ𝑁

2. Apply softmax to get the attention distribution over source tokens

𝑤𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑠𝑡 ∈ ℝ𝑁

3. Compute weighted sum over the encoder hidden states

𝑎𝑡 = ෍

𝑖=1

𝑁

𝑤𝑖
𝑡𝑒𝑖 ∈ ℝℎ

4. Concatenate 𝑎𝑡 with 𝑑𝑡 ,and feed [𝑎𝑡; 𝑑𝑡] ∈ ℝ2ℎto the decoder

How to compute attention?

10

• Attention can significantly improve neural machine translation (NMT)
performance

• Allow decoder to focus on different parts of the source

• Solves the information bottleneck problem

• Attention helps with the vanishing gradient issue

• Provides shortcut to early source tokens

• Attention provides interpretability

• Implicitly learn soft alignment between source and target sequence

• Check the attention distribution for each output token

Why attention is so powerful?

D. Bahdanau, K. Cho, and Y. Bengio. "Neural machine translation by jointly learning to align and translate.” (2014)

11

• Attention is also used in computer vision:

• Attend to different parts on input image when generating caption

• Attention can also be a basic building block for sequence modeling

• New sequence models: Transformers, BERT, GPT etc.

Attention as a general technique

Xu, Kelvin, et al.”Show, attend and tell: neural image caption generation with visual attention” ICML 2015

12

• Remember attention is introduced in Seq2Seq systems to attend different parts
of source sentence

• Self-attention: apply attention within a single sentence

• All words attend to all words in previous layer (most arrows are omitted)

Replace recurrent with self-attention

Credit: Stanford cs224n

13

• To compute attention we need queries, keys, and values:
• Queries: 𝑞1, 𝑞2, … 𝑞𝑇 . Each 𝑞𝑖 ∈ ℝ𝑑

• Keys: 𝑘1, 𝑘2, … 𝑘𝑇 . Each 𝑘𝑖 ∈ ℝ𝑑

• Values: 𝑣1, 𝑣2, … 𝑣𝑇 . Each 𝑣𝑖 ∈ ℝ𝑑

• In self-attention, the queries, keys and values come from the same source

• 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑞𝑖 = 𝑄𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖

where 𝐾, 𝑄, 𝑉 ∈ ℝ𝑑×𝑑 are linear transformation used for all 𝑥𝑖

• Self-attention generate new representations as follows:

• score: 𝑠𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗 , attention: 𝑎𝑖𝑗 =

exp(𝑠𝑖𝑗)

σ𝑗′ exp(𝑠𝑖𝑗′)
 , output𝑖 = σ𝑗 𝑎𝑖𝑗𝑣𝑗

Self-attention computation

Credit: Stanford cs224n

14

• Transformer structure:

• Two parts: encoder & decoder (Seq2Seq model)

• Basic block: self-attention + feed-forward

• Stacked multiple blocks

• Bunch of fixes/tricks

Transformer

Vaswani, Ashish, et al. “Attention is all you need” Neurips 2017

15

• Previously for each word 𝑖, we compute (one) attention over the words:
• 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑞𝑖 = 𝑄𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖 where 𝐾, 𝑄, 𝑉 ∈ ℝ𝑑×𝑑

• score: 𝑠𝑖𝑗 = 𝑞𝑖
𝑇𝑘𝑗 , attention: 𝑎𝑖𝑗 =

exp(𝑠𝑖𝑗)

σ𝑗′ exp(𝑠𝑖𝑗′)
, output𝑖 = σ𝑗 𝑎𝑖𝑗𝑣𝑗

• What if we want multiple attentions for each word?

• We can define multiple attention “heads” by multiple 𝐾, 𝑄, 𝑉 matrices

• Each head will look at different things and combine values differently!

• Define 𝐾𝑙 , 𝑄𝑙 , 𝑉𝑙 ∈ ℝ𝑑×
𝑑

ℎ, where ℎ is the number of attention heads

• For each head 𝑙: 𝑘𝑖
𝑙 = 𝐾𝑙𝑥𝑖 , 𝑞𝑖

𝑙 = 𝑄𝑙𝑥𝑖 , 𝑣𝑖
𝑙 = 𝑉𝑙𝑥𝑖

• Use 𝑘𝑖
𝑙, 𝑞𝑖

𝑙, 𝑣𝑖
𝑙 ∈ ℝ

𝑑

ℎ to compute score, attention and output𝑖
𝑙 ∈ ℝ

𝑑

ℎ

• Combine all attention head outputs: output𝑖 = 𝑊𝑜[output𝑖
1; … ; output𝑖

ℎ] where 𝑊𝑜 ∈ ℝ𝑑×𝑑

Multi-head self-attention

16

• Self-attention operation doesn’t consider the order information

• Simple fix: we can represent the sequence index as a vector

• Define positional embedding 𝑝𝑖 ∈ ℝ𝑑, for 𝑖 ∈ 1, 2, … , 𝑇

• Suppose 𝑒𝑖 ∈ ℝ𝑑, for 𝑖 ∈ 1,2, … , 𝑇 are the word embeddings, then we can add the positional
embedding at layer 0: 𝑥𝑖

0 = 𝑒𝑖 + 𝑝𝑖

• Options:

• Sinusoidal position embedding:

• Learned position embedding:

Just make all 𝑝𝑖 as learnable parameters

Encode sequence order

17

• To use self-attention in decoders, we need to

ensure the decoder cannot peek the future

• Simple fix: we can mask the attention to future

words by setting attention score as −∞:

𝑠𝑖𝑗 = ൝
𝑞𝑖

𝑇𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

Transformer decoder: self-attention

[start]

The

boy

want

[start] The boy want

18

• In self-attention, keys, queries and values

come from the same source

• However, on the decoder side, besides self-

attention we also want to attend the states

from encoder (Seq2Seq model)

• Simple fix: construct keys and values using

encoder states

• Define 𝑥1, … 𝑥𝑇 ∈ ℝ𝑑 as the output

vectors from the encoder

• Define ℎ1, … ℎ𝑁 ∈ ℝ𝑑 as the input vectors

from the decoder

• Compute key, value, query by:

 𝑘𝑖 = 𝐾𝑥𝑖 , 𝑣𝑖 = 𝑉𝑥𝑖 , 𝑞𝑖 = 𝑄ℎ𝑖

Transformer decoder: encoder-attention

19

• Residual connection and layer normalization:

• Add after multi-head attention and feed-
forward modules

• Help models train faster

• Learning rate schedule:

• warm-up stage: learning rate first increase
then decrease

• Converge to better sub-optimal

Other tricks in Transformer

Ba, Jimmy Lei, et al. “Layer normalization”

20

• Transformer is originally designed for language translation task

• Encoder takes a sentence in language A

• Decoder generates a sentence in language B

Encoder – Decoder Transformer
Architecture

https://www.datacamp.com/tutorial/how-transformers-work

21

• T5 (Text-to-Text Transfer Transformer)

• Translate text between languages designed by Google in 2019

• The T5 can be fine-tuned for a wide range of NLP tasks, including language
translation, question answering, summarization, and more.

Encoder - Decoder Transformer Model

Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer [Raffel et al., 2019]

22

• Encoder-only Transformers are specifically designed for text classification
tasks.

• Classify a piece of text into one of several predefined categories.

• Examples: Sentiment Analysis, Topic Classification, Spam Detection

• Encoding Process:

• The encoder processes a sequence of tokens from the text.

• It produces a fixed-size vector representation (embedding) of the entire
sequence.

• This vector encapsulates the meaning and context of the text.

• The representation is then used for classification by downstream classifiers

Encoder Transformer Architecture

23

• BERT (Bidirectional Encoder Representations from Transformers)
• bidirectionally trained language models can have a deeper sense of language

context and flow than single-direction.

Encoder Transformer Model

https://www.analyticsvidhya.com/blog/2021/12/manual-for-the-first-time-users-google-bert-for-text-classification/

• Pre-training Tasks:
– Masked LM (MLM)

Predicts the original values of randomly
masked tokens within a sequence

– NSP (Next Sentence Predict)
Predicts if the second sentence in a pair is
the subsequent sentence of the first one

24

• Decoder-only Transformers are designed for text generation tasks.
• Takes a fixed-size vector representation of the context.

• Generates a sequence of words one at a time.

• Each word is conditioned on all previously generated words.

• Pre-trained model can be fine-tuned to downstream tasks

Decoder Transformer Architecture

Improving Language Understanding by Generative Pre-Training [Radford et al., 2018]
25

• GPT (Generative Pre-trained Transformer)

• Masked Attention

blocking information from tokens that are to
the right of the position being calculated.

Decoder Transformer Model

https://jalammar.github.io/illustrated-gpt2/

26

Scaling up of LLMs

https://labelyourdata.com/articles/llm-model-size

27

•

• Large Language Model Training

•

Outline of Session 1

28

LLM Training

Massive

Unlabele

d Dataset

Narrow

Labeled

Dataset

Human

rank of response

Pre-Training
Instruction

Fine-Tuning

Reinforcement Learning with

Human Feedback (RLHF)

Objective:

predict

next word

Objective:

response to

queries

Objective:

predict

human rank

Objective:

high quality

response

Reward

Model

29

https://www.google.com/imgres?imgurl=https://t4.ftcdn.net/jpg/07/56/11/69/360_F_756116963_MKdL7O7BKH1ZHicpGXHd9ys9xDMhkGr2.jpg&imgrefurl=https://stock.adobe.com/search?k%3Dllm&h=360&w=360&tbnid=pjJO1DTR_2ciUM&source=sa.im&tbnh=225&tbnw=225&usg=AI4_-kRa4wbzodlPOjWiUHvmEkej_Y6H8w&vet=1&docid=6Zqm9Bf0cu0rdM
https://www.google.com/imgres?imgurl=https://t4.ftcdn.net/jpg/07/56/11/69/360_F_756116963_MKdL7O7BKH1ZHicpGXHd9ys9xDMhkGr2.jpg&imgrefurl=https://stock.adobe.com/search?k%3Dllm&h=360&w=360&tbnid=pjJO1DTR_2ciUM&source=sa.im&tbnh=225&tbnw=225&usg=AI4_-kRa4wbzodlPOjWiUHvmEkej_Y6H8w&vet=1&docid=6Zqm9Bf0cu0rdM
https://www.google.com/imgres?imgurl=https://t4.ftcdn.net/jpg/07/56/11/69/360_F_756116963_MKdL7O7BKH1ZHicpGXHd9ys9xDMhkGr2.jpg&imgrefurl=https://stock.adobe.com/search?k%3Dllm&h=360&w=360&tbnid=pjJO1DTR_2ciUM&source=sa.im&tbnh=225&tbnw=225&usg=AI4_-kRa4wbzodlPOjWiUHvmEkej_Y6H8w&vet=1&docid=6Zqm9Bf0cu0rdM

Pre-Training

Training objective: Predict Next Token (self-supervised learning)

30

Pre-Training

Training objective: Predict Next Token (self-supervised learning)

Examples:

• Text in dataset: LLMs are cool.

• Input token: LLM #s are

• LLM output: probabilities of tokens

• Objective: maximize the predict probability

of correct token “cool”.

Pre-Training

Training objective: Predict Next Token (self-supervised learning)

Examples:

• Text in dataset: LLMs are cool.

• Input token: LLM #s are

• LLM output: probabilities of tokens

• Objective: maximize the predict probability

of correct token “cool”.

Loss function (Tokens 𝑢𝑖, Parameters Θ)

𝐿 𝑢 = − ෍

𝑖

𝑙𝑜𝑔𝑃(𝑢𝑖|𝑢𝑖−𝑘 , … , 𝑢𝑖−1; Θ)

Pre-Training

• Training dataset: unlabeled large scale corpora

• Trillions of token (e.g. 2 trillions for Llama 2)

• Text crawled from website, github, Wikipedia….

33

Pre-Training

• Training dataset: unlabeled large scale corpora

• Trillions of token (e.g. 2 trillions for Llama 2)

• Text crawled from website, github, Wikipedia….

• Pre-training is the most expensive stage

• Llama 2 trained with A100 GPUs

• Pre-trained LLMs learn the knowledge from large scale corpora

• Has ability of reasoning, coding, summary, math…
34

Instruction Fine-Tuning

• Instruction Fine-Tuning (a.k.a. supervised fine tuning, or SFT)

• Training objective: Response according to queries (supervised learning)

• Example of (domain-/task-specific) dataset:

35

Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

36

Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

• Dataset: Initial stage: publicly available instruction tuning dataset

Later: high quality dataset

37

Instruction Fine-Tuning

• Loss function: similar with pre-training stage

• Only compute loss on response text

• No loss for prompt text

• Dataset: Initial stage: publicly available instruction tuning dataset

Later: high quality dataset

• E.g., Fine-tuned LLMs generate output considering helpfulness and safety

38

Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

39

Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text

40

Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text

• Training dataset:

• Each input prompt with two

generated text, one is chosen by

human, one is rejected by human

41

Reinforcement learning with human
feedback (RLHF)

• Step 1

• Training a reward model to recognize

human preferred text (initialized by

pre-trained model)

• Training objective: learn human

preference of generated text

• Loss function:

• 𝑥: prompt text, 𝑦: generated text

(chosen 𝑦𝑐 or rejected 𝑦𝑟),

• 𝑟𝜃: output of reward model based

on parameters. 42

Reinforcement learning with human
feedback (RLHF)

• ChatGPT collecting training dataset from user

43

What is Reinforcement Learning (RL)

• In reinforcement learning, the goal is to learn the model parameters

that maximize a "reward function."

• The model, often referred to as the agent in RL, generates outcomes

based on its current parameters, and with each outcome, the agent

receives a reward.

• This reward can be positive, indicating a favorable result, or negative,

discouraging poor predictions.

• The agent learns sequentially by generating outcomes, receiving

feedback through rewards, and refining its parameters accordingly.

• Parameters are adjusted to make highly-rewarded outcomes more

likely, enabling the agent to improve over time.

• The ultimate objective is to reinforce actions that lead to successful

outcomes while discouraging those that do not. 44

Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

45

Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for

the generated output

46

Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for

the generated output

• Using RL algorithm for training

• Proximal Policy Optimization (PPO)

47

Reinforcement learning with human
feedback (RLHF)

• Step 2 (applying RL)

• Train the fine-tuned LLM using reward

model

• Reward model calculates a reward for

the generated output

• Using RL algorithm for training

• Proximal Policy Optimization (PPO)

• Get a LLM that aligns human value

48

Performance comparison of pre-trained
and finetuned

Pre-trained model leaderboard Fine-tuned (with RLHF) model leaderboard

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

Finetuned models show better performance in most benchmarks.

49

• PEFT: Fine-tune large pre-trained models for specific tasks while

updating only a small subset of the model's parameters.

• Why PEFT

• Produce customized LLMs on specific tasks

• LLMs are too expensive to finetune

• By modifying fewer parameters, preserve the model's general

knowledge while adapting to specific tasks.

Parameter Efficient Fine Tuning (PEFT)

50

• Small neural network modules inserted into a pre-trained model.

• Inserted after the attention and/or feed-forward layers

• Freeze other parameter and only train adapter

• A bottleneck architecture module

• a down-projection layer

• a non-linearity layer

• an up-projection layer

PEFT - Adapter

51

• Traditional pretraining fine-tuning:

• Pretrain W, Finetune W

• LORA (Low Rank Adaptation):

• Pretrain W, Finetune AB

• AB are low-rank matrices, rank(A) << rank(W)

• Benefit:

• light-weight fine-tuning cost

• Fast domain adaptation without additional serving cost

PEFT - LoRA

latency

LoRA, [Edward J. Hu et al., 2021]

52

• QLoRA : LoRA with quantized base model weights

• NormalFloat (NF4) datatype for LLM weight quantization

• CPU-offloading for optimizer state

• Reduce memory usage significantly

PEFT - QLoRA

53

• Prompt : tell the LLM what to do in natural language

• Prompt engineering : Identify suitable prompt for a specific task

• General rule of thumb

• write clear and descriptive instructions

• Split complex task into simpler subtasks

Prompt Engineering

54

• Chain of thought prompting

• Ask the model to work step-by-step

Prompt Engineering

55

Prompt Tuning

• From discrete prompt to continuous trainable prompt

• learning a small set of continuous task-specific vectors (called "soft

prompts") that are prepended to the input sequence.

• Extremely parameter-efficient (often <0.1% of model parameters).

56

•

•

• Large Language Model Inference

Outline of Session 1

57

• Loading Weight to GPU

• Tokenizing the input text sequence (Prompt)

• Prefill Phase

• Decoding Phase

• Detokenize output tokens

LLM Inference Procedure

Pierre Lienhart, Medium. https://medium.com/@plienhar/llm-inference-series-2-the-two-phase-process-behind-llms-responses-1ff1ff021cd5

Key Phases

58

• Loading Weight to GPU

• LLaMa-2-7B (FP32 ~ 28GB)

• Tokenizing the input text sequence (Prompt)

• Tokenizer breaks down text into tokens (e.g word, subword,characters)

• Tokens are converted into vectors that model can understand

• Text -> tokens -> vector

LLM Inference Procedure

OpenAI. https://platform.openai.com/tokenizer

[3923, 374, 445, 11237, 45478, 30]

What is LLM inference?

59

• Tokenization is the process of dividing text into smaller units called tokens, which are
typically words or sub-words.

• Tokens are mapped to vectors for use in neural networks.

Two Approaches :

• Top-Down (Rule-based tokenization) uses predefined rules to segment text into tokens,
typically based on grammar and syntax, e.g., splitting sentences at punctuation marks or spaces.

• Bottom-up (Subword tokenization) breaks down words into smaller units, such as subwords or
characters, allowing for the handling of unknown words and variations, e.g., Byte Pair Encoding
used in BERT and GPT.

Tokenization

Tokenization is an important step . [SEP]

Tokenization is an important step.

60

Byte Pair Encoding is a compression-based tokenization method that iteratively
merges the most frequent character pairs to create subword units.

Step 1: Start with a vocabulary containing the individual characters present in the training
corpus.

Step 2: Examine the training corpus and identify the two most frequently adjacent symbols.

Step 3: Add a new merged symbol representing the combined pair to the vocabulary.
Replace every instance of the adjacent pair in the corpus with the new merged symbol.

Step 4: Continue counting and merging the most frequent pairs. Repeat until you've
performed k merges, resulting in k novel tokens.

Step 5: The final vocabulary consists of the original set of characters plus the k new
symbols created through merging.

Byte-Pair Encoding

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
61

Byte-Pair Encoding

https://colab.research.google.com/github/catalyst-team/dl-course/blob/master/week-09/seminar_done.ipynb 62

• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the
LLM Model to generate the first token

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237
45478

30

LLM 92

Prefill Phase

63

• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the
LLM Model to generate the first token

• Decoding Phase (Multi-step Phase)

• Appending the generated token to the
sequence of input tokens and using it as a
new input to generate the next token

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237
45478

30

LLM 92

...
374
445

11237
45478

30
92

LLM 11202

Prefill Phase

Decoding Phase

#1

64

• Prefill Phase (Single-step Phase)

• Running the tokenized prompt through the
LLM Model to generate the first token

• Decoding Phase (Multi-step Phase)

• Appending the generated token to the
sequence of input tokens and using it as a
new input to generate the next token

Repeat decoding until meeting a stopping criteria
• Generating end-of-sequence token

• Reaching maximum sequence length

LLM Inference Procedure

[3923, 374, 445, 11237, 45478, 30]

3923
374
445

11237
45478

30

LLM 92

...
374
445

11237
45478

30
92

LLM 11202

...
445

11237
45478

30
92

11202

LLM 3370

Prefill Phase

Decoding Phase

#1

#2

...
#N 65

• Inference - Fewer request, offline traffic, latency

Take a series of tokens as inputs, and generate subsequent tokens
autoregressively until they meet a stopping criteria

• Prefill Phase (Process the input)

• Decoding Phase (Generate the output)

• Serving - Many requests, online traffic, cost-per-query

• Co-locate the two phases and batch the computation of prefill
and decoding across all users and requests

LLM Inference Scenarios

66

Break

Multimodal Representation
and Efficiency of
Foundation AI Models

Wei Wen, Research Scientist, Meta

Duration: 1 hour

• Multimodal Representation Techniques

• Multimodal Taxonomy

• Multimodal Understanding

• Multimodal Generation

• Efficiency of Large Foundation Models

• Quantization

• Low rank

• Sparsity / pruning

• Parallelism

• Linear-Time Sequence Modeling

69

Outline – Two Main Parts

• Multimodal Taxonomy in this Tutorial
• Image Understanding: image & text in, text out

• Image Generation: image & text in, image & text out

• Multimodal Understanding
• Modeling: Llava, Flamingo, etc

• Vision Encoders: CLIP, MetaCLIP

• Multimodal Generation
• Autoregressive multimodal generation

• Diffusion and Modeling Unification

Multimodal Representation Techniques

70

• Multimodal Taxonomy in this Tutorial
• Image Understanding: image & text in, text out

• Image Generation: image & text in, image & text out

•

•

•

•

•

•

Multimodal Representation Techniques

71

Multimodal Taxonomy in this Tutorial

• Focus on image and text modes only

Core Model

Text Image

Text

Core Model

Text Image

TextImage

• ChatGPT 4o Image Generation• Classification

• VQA

• Captioning

• Any tasks in text as outputs

Understanding Generation

72

•

•

•

• Multimodal Understanding
• Modeling: Llava, Flamingo, etc

• Vision Encoders: CLIP, MetaCLIP

•

•

•

Multimodal Representation Techniques

73

Multimodal Understanding -- Modeling

Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2023). Visual instruction tuning. Advances in neural

information processing systems, 36, 34892-34916.

• Mainstream model architecture

74

Multimodal Understanding -- Flamingo

Alayrac, J. B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., ... & Simonyan, K. (2022). Flamingo: a visual language model for few-shot

learning. Advances in neural information processing systems, 35, 23716-23736.
75

• CLIP: Align image representations to text semantics

Multimodal Representations -- CLIP

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual

models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PmLR. 76

• MetaCLIP:
• More transparent data curation

with better models

• “Released our training data
distribution”

Multimodal Representations -- MetaCLIP

77

•

•

•

•

•

•

• Multimodal Generation
• Autoregressive multimodal generation

• Diffusion and Modeling Unification

Multimodal Representation Techniques

78

Multimodal Generation – Autoregressive
Generation

Team, C. (2024). Chameleon: Mixed-modal early-fusion foundation models. arXiv

preprint arXiv:2405.09818.
79

Image Tokenization: VQ-VAE

Van Den Oord, A., et al., (2017). Neural discrete representation learning. NeurIPS.
80

Image Tokenization: VQ-GAN

Esser, P., et al., (2021). Taming transformers for high-resolution image synthesis. CVPR. 81

Diffusion and Modeling Unification

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M., Shamis, L., ... & Levy, O. (2024). Transfusion: Predict the next token

and diffuse images with one multi-modal model. arXiv preprint arXiv:2408.11039.
82

Text Diffusion (and Multimodal Diffusion)

83

• Quantization
• QAT, Post-training Quantization, QLoRA, FP8 training

• Low rank
• LoRA

• Sparsity / pruning
• Non-structured, structured, 2:4, MOE

• Parallelism
• Parallel decoding: Speculative Decoding, Text Diffusion

• Parallel Training: TP, PP, EP, CP, DP

• Linear-Time Sequence Modeling
• Linear Transformer, xLSTM, Mamba

Efficiency of Large Foundation Models

84

• Quantization
• QAT, Post-training Quantization, QLoRA, FP8 training

•

•

•

•

•

•

•

•

•

Efficiency of Large Foundation Models

85

Efficiency targeted phases

• Training efficiency: FP8 training

• Fine-tuning efficiency: QLoRA

• Inference efficiency:

• Quantization-aware training

• This is the go-to approach if accuracy is more important

• Edge models are relatively small in practice, so the cost is acceptable

• Straight-Through Estimator with grouping is a very strong baseline

• Post-training Quantization

• SpinQuant, SmoothQuant

Quantization for Efficiency – Taxonomy

86

• Numerical bias

• Deterministic rounding – bias in a quantization group, minimal/no bias
in the final logit?

• Stochastic rounding – no bias

• Numerical variance

• Key problem!

• Research focus: variance reduction

• Constraining outlier scale

• Grouping – if your group size is 1, quantization is floating-precision

• A small group size (e.g. 32) can significantly reduce variance with
minimal overhead

Quantization – Basics

87

• Clipping

• Random rotation

• Rescaling

• ……

Quantization – Outlier Constraint

88

Quantization – Outlier Constraint:
Clipping

Wen, W., et al., (2017). Terngrad: Ternary gradients to reduce communication in distributed deep learning. NeurIPS.

• TernGrad: layer-wise clipping + grouping

89

Quantization – Outlier Constraint:
Rotation

Liu, Z., et al., (2024). Spinquant: LLM quantization with learned rotations. arXiv:2405.16406.
90

Quantization – Outlier Constraint:
Rescaling

Xiao, G.,et al., (2023). Smoothquant: Accurate and efficient post-training quantization for large language models. ICML. 91

•

•

• Low rank
• LoRA

•

•

•

•

•

•

•

Efficiency of Large Foundation Models

92

Low-rank + Quantization for Fine-tuning:
QLoRA

Dettmers, T., et al., (2023). Qlora: Efficient finetuning of quantized LLMs. NeurIPS. 93

•

•

•

•

• Sparsity / pruning
• Non-structured, structured, 2:4, MOE

•

•

•

•

•

Efficiency of Large Foundation Models

94

• Non-structured sparsity
• Less popular because of computation inefficiency

• Structured sparsity
• Remove weights group by group

• Structured in a way with high compute efficiency

• E.g. NVIDIA 2:4 sparsity

Sparsity / Pruning -- Patterns

Wen, W., Wu, C., Wang, Y., Chen, Y.,

& Li, H. (2016). Learning structured

sparsity in deep neural

networks. Advances in neural

information processing systems, 29.

https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/
95

• Thresholding

• Regularization

• Optimizer

Sparsity / Pruning -- Methods

96

SparseGPT

Frantar, E., & Alistarh, D. (2023, July). Sparsegpt: Massive language models can be accurately pruned in one-shot.

In International Conference on Machine Learning (pp. 10323-10337). PMLR.

97

Natively Sparse Models: Mixture of
Experts

Fedus, W., Zoph, B., & Shazeer, N. (2022). Switch transformers: Scaling to trillion parameter models with simple

and efficient sparsity. Journal of Machine Learning Research, 23(120), 1-39. 98

•

•

•

•

•

•

• Parallelism
• Parallel decoding: Speculative Decoding, Text Diffusion

• Parallel Training: TP, PP, EP, CP, DP

•

•

Efficiency of Large Foundation Models

99

• Parallel decoding

• Speculative Decoding

• Text Diffusion

• Parallel Training

• Data parallelism

• Vanilla

• ZeRO / FSDP sharding

• Model parallelism

• Tensor parallelism

• Pipeline parallelism

• Context parallelism

• Expert parallelism

Parallelism

100

Speculative Decoding

https://research.google/blog/looking-back-at-speculative-decoding/ 101

102

Follow-up works:

MEDUSA, EAGLE

Data Parallelism – ZeRO (in DeepSpeed)

Rajbhandari, S., Rasley, J., Ruwase, O., & He, Y. (2020, November). Zero: Memory optimizations toward training trillion parameter

models. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-16). IEEE. 103

• Fully Sharded Data Parallel (FSDP) -- A PyTorch implementation

Data Parallelism – FSDP

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
104

Model Parallelism

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., ... & Zaharia, M. (2021, November). Efficient large-scale

language model training on gpu clusters using megatron-lm. In Proceedings of the international conference for high performance computing,

networking, storage and analysis (pp. 1-15). 105

•

•

•

•

•

•

•

•

•

• Linear-Time Sequence Modeling
• Linear Transformer, xLSTM, Mamba

Efficiency of Large Foundation Models

106

Linear-Time Sequence Modeling – Linear
Transformer

Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020). Linformer: Self-attention

with linear complexity. arXiv preprint arXiv:2006.04768. 107

Linear-Time Sequence Modeling – Mamba

Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752.

108

• xLSTM: Extended Long Short-Term Memory

Linear-Time Sequence Modeling – xLSTM

109

Break

Application of Foundation
Models in EDA

Zhiyao Xie, Assistant Professor, HKUST

Duration: ~1 hour

Challenges in Delivering Better Chips

IC Design Cost is Skyrocketing

(Not including manufacturing)

Increasing IC design complexity

Apple A15

15B transistors

Apple A11

4B transistors

Apple M3 Max

92B transistors

IC complexity

• Increasing IC design cost

• Increasing time to market

112

How AI Assists EDA - Our Taxonomy

Type I: Supervised Predictive AI Techniques for EDA

Type II: Foundation AI Techniques for EDA

(Circuit Foundation Model)

113

How AI Assists EDA - Our Taxonomy

Type I: Supervised Predictive AI Techniques for EDA

114

Explorations in Predictive AI Methods

• Predictive AI supports many applications: both early evaluation & optimization

• Explored in academia & industry, cover all stages

[1] Machine learning for electronic design automation: A survey. ACM TODAES, 2021.

[2] MLCAD: A survey of research in machine learning for CAD keynote paper. IEEE TCAD, 2021.

115

Predictive AI for EDA/Circuit Design

……

Metrics (bad)

Metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatedly from scratch

• Why not learn from prior solutions? More intelligence!

N iterations

*Source: Kahng et al., VLSI physical design

116

Predictive AI for EDA/Circuit Design

Metrics (bad)

Metrics (good)

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

• Why not learn from prior solutions? More intelligence!

• ML in Electronic Design Automation: Early Timing and Power Modeling

N iterationsVerilog

117

Fast & high-fidelity ML prediction

118

Example: Timing & Power Evaluation of
RTL Code?

• Given an RTL, can we directly evaluate its timing and power?

• Fine-grained timing: slack per register

• Fine-grained power: per-cycle power

• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

•

•

119

Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction

• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

• Guide optimization during synthesis

• Guide retime and path_group

120

Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction Better post-opt timing distribution

• Fine-grained timing model at RTL

• Evaluate slack of each register endpoint

• Annotate slack directly on HDL

• Guide optimization during synthesis

• Guide retime and path_group

121

Case 1: Early Timing Prediction at RTL-Stage

[1] Annotating Slack Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Optimization, DAC 2024

[2] Transferable Pre-Synthesis PPA Estimation for RTL Designs with Data Augmentation Techniques, TCAD 2024

High correlation in prediction Better post-opt timing distribution

Key idea: learn the pattern of input RTL logic

• Per-cycle power model at RTL
•

•

•

122

Case 2: Efficient Power Model at RTL-Stage

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)

• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

•

123

Case 2: Efficient Power Model at RTL-Stage

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)

• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

• Low-cost & accurate on-chip power model

124

Case 2: Efficient Power Model at RTL-Stage

Small OPM in CPU layout (pink)

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)

• Per-cycle power model at RTL
• Capture key RTL signals as inputs (proxies)

• Fast & accurate design-time simulation

• Low-cost & accurate on-chip power model

125

Case 2: Efficient Power Model at RTL-Stage

Small OPM in CPU layout (pink)

[1] APOLLO: An Automated Power Modeling Framework for … Microprocessors, MICRO 2021 (Best Paper Award)

[2] DEEP: Developing Extremely Efficient Runtime On-Chip Power Meters,” ICCAD 2022

[3] Unleashing Flexibility of ML-based Power Estimators Through Efficient Development Strategies, ISLPED 2024 (Best Paper Nomination)

Key idea: capture most power-related RTL signals

Type I: Supervised Predictive AI Techniques for EDA

• Difficulty in getting sufficient labeled data

• Time-consuming AI model development process

• Lack of generalization across tasks

How AI Assists EDA - Our Taxonomy

126

Opportunities from Foundation Models

• Emergence of large foundation models in many fields

• Unprecedented ability to understand, predict, and generate content

Image model: DALL-E Video model: SoraLanguage model: GPT

Q: Image (A potato king) Q: Video (A family of monsters)
A:A:

127

Trend of AI in all fields:

Task-specific → General

Small data → Big data

Supervised → Unsupervised

Single-modality → Multimodal

Why no counterpart in AI for chip design?

128

Trend of AI in all fields:

Task-specific → General

Small data → Big data

Supervised → Unsupervised

Single-modality → Multimodal

Why no counterpart in AI for chip design?

129
Circuit Foundation Model (CFM)

Type II: Foundation AI Techniques for EDA

(Circuit Foundation Model)

Paradigm 1: Encoder-based circuit foundation models

Paradigm 2: Decoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy

130

Rethink Circuits from Data Perspective

• Chip is a delicate structured implementation of functionality

• Minor structure change (flipping a gate) drastically affect functionality

• Chip is inherently multi-stage and multi-modality:

• Different level of details across stages

• Lack of chip data:

• The most important IP/asset

• No companies share their chip design

131

Paradigms of AI for EDA Techniques

132

[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711.

Encoder-based circuit foundation model

DeepGate

DeepGate2

FGNN

HOGA

DeepGate3 PolarGate

DeepSeq

Circuit
Encoder

NetTAGDeepCell

ProgSG

Design2Vec

Circuit
Encoder

Circuit
Fusion

DeepGate4

TAG

LLM-HD

HARP
SNS v2

MGVGA

R
TL

H
LS

La
yo

u
t

Open-Source

Close-Source

2025

2024

2023

2022

2021

N
e

tl
is

t

Encoder-Based

Circuit
GNN

GAMORA

133

[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711.

Decoder-based circuit foundation model

Open-Source

Close-Source

2025

2024

2023

R
TL

 C
o

d
e

Decoder-Based

RTLLM

VerilogEval

CreativeEval

RTL-repo

VHDL-Eval

ChipGPTV

VerilogEval v2

Chip-Chat

AutoChip

VGen

ChipNemo

MG-Verilog

VerilogCoder

CraftRTL

RTLSquad

BetterV

ChipGPT

RTLRewriter

LLM4DV

AutoSVA2

AssertLLM

ChIRAAG

Verilog
Reader

UVLLM

MEIC

RTLFixerHLSPilot

C2HLSC

GPTAIG
Chip

SpecLLM

DIVAS

ChatEDA

RAG-EDA

LADAC

Artisan

Analog
Xpert

Analog
Coder

LaMAGICH
LS

 C
o

d
e

RTL-Coder

AutoVCoder

Origen

AVIRIL

CodeV

ChipAlign

SynthAI

NL2SVA

O
p

t. Se
cu

ri
ty

Kande
et al.

NSPG

A
rc

h
it

e
ct

u
re

DeepRTL

HDL
Debugger

V
e

ri
fi

ca
ti

o
n

 &
 D

e
b

u
g

VeriAssist

FabGPT

DRC-Coder

Fl
o

w
&

La
yo

u
t

DAVE
(2020)

Pearce
et al.
(2021)

Analog
Genie

A
n

al
o

g

Self-
HWDebug

SecRT-
LLM

FVEval

Assertion
Bench

134

[1] A Survey of Circuit Foundation Model: Foundation AI Models for VLSI Circuit Design and EDA, arXiv:2504.03711.

Type II: Foundation AI Techniques for EDA

(Circuit Foundation Model)

Paradigm 1: Encoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy

135

Encoder-based circuit foundation model

DeepGate

DeepGate2

FGNN

HOGA

DeepGate3 PolarGate

DeepSeq

Circuit
Encoder

NetTAGDeepCell

ProgSG

Design2Vec

Circuit
Encoder

Circuit
Fusion

DeepGate4

TAG

LLM-HD

HARP
SNS v2

MGVGA

R
TL

H
LS

La
yo

u
t

Open-Source

Close-Source

2025

2024

2023

2022

2021

N
e

tl
is

t

Encoder-Based

Circuit
GNN

GAMORA

136

Encoder Model at RTL Stage

137

Multimodal Representation Learning, on RTL?

• Encode & fuse information from diverse modalities

• Vision-language

• Graph-language

• Software-graph

• ……

• Can we fuse multiple circuit modalities to learn better circuit
representation?

138

Summary of Circuit Modalities

• Multimodal nature of RTL-stage circuits

HDL

Code

semantic structure

Functionality

Summary

Structure

Graph

139

RTL Circuit Encoder: CircuitFusion

• Pre-Training: Multimodal circuit encoder (unsupervised) training

1. Learn to recognize masked circuit elements

2. Learn to recognize circuits with the same functionality

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25.

Unsupervised

contrastive learning

140

A multimodal

circuit encoder

An RTL

(sub-)circuit

The encoder converts RTL into a general embedding

RTL Circuit Encoder: CircuitFusion

• Pre-Training: Multimodal circuit encoder (unsupervised) training

1. Learn to recognize masked circuit elements

2. Learn to recognize circuits with the same functionality

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25.

Unsupervised

contrastive learning

141

The multimodal

circuit encoder

Preprocessing: Split Circuit to Sub-circuits

• Circuit Property 1: parallel execution

• Combinational logic calculates simultaneously

• Sequential registers are updated only at each clock cycle

• Strategy 1: sub-circuit generation

• Split based on register cones

• Backtrace all combinational input logic

• Advantages

• Consistency in Modality & stage

• Complete state transition of 1 cycle

• Intermediate granularity

142

CircuitFusion Pre-Training (1/2)

• Circuit Property 2: functional equivalent transformation

• Circuit w. similar function may have different structures

• Strategy 2: semantic-structure pre-training

• Self-supervised Task #1-3 for each modality and multimodal fusion

143

CircuitFusion Pre-Training (2/2)

• Circuit Property 3: multiple design stages

• RTL (high-level semantics) → netlist (low-level details)

• Strategy 3: implementation-aware alignment

• Pre-training with netlist encoder across design stage (Task #4)

144

Design Quality Prediction Tasks at RTL

• High performance on RTL-stage PPA prediction:

[1] CircuitFusion: Multimodal Circuit Representation Learning for Agile Chip Design, ICLR’25.

Encoder-based circuit foundation model

DeepGate

DeepGate2

FGNN

HOGA

DeepGate3 PolarGate

DeepSeq

Circuit
Encoder

NetTAGDeepCell

ProgSG

Design2Vec

Circuit
Encoder

Circuit
Fusion

DeepGate4

TAG

LLM-HD

HARP
SNS v2

MGVGA

R
TL

H
LS

La
yo

u
t

Open-Source

Close-Source

2025

2024

2023

2022

2021

N
e

tl
is

t

Encoder-Based

Circuit
GNN

GAMORA

146

Encoder Model at Netlist Stage

147

Multimodal Circuit Learning: RTL vs Netlist

• Multimodal learning: fuse information from diverse modalities

• Vision-language

• Software-graph

• ……

• Multimodal learning on RTL

• Register-transfer level (RTL)

• Earlier stage → more semantic

• Fuse 3 RTL modalities at register level

• Multimodal learning on netlist？
• Gate-level netlists

• Later stage →more structure

• Should fuse at gate level

148

NetTAG: A Multimodal Netlist Encoder

• Netlist functional and physical properties in text-attributed graph

• Multimodal preprocess: formulate netlist as text-attributed graph

• Multimodal model: fuse gate text (LLM) with circuit graph (GNN)

• Multimodal pre-train: self-supervised and cross-stage-aware

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25.
149

NetTAG Framework Overview

1. Preprocessing → 2. Pre-Training → 3. Fine-Tuning

150

2. Self-Supervised Pre-Training

• Two-phase encoding → Two-step pre-training

• Capture netlist functional and physical properties

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25.
151

2. Self-Supervised Pre-Training (1/2)

• Step 1: Enhancing logic understanding in ExprLLM

• Goal 1: Differentiate gate expression functionality

• Objective # 1: Symbolic expression contrastive learning

• Build gate expression dataset
• 2-hop symbolic expressions

• Boolean equivalence transformation rules

152

2. Self-Supervised Pre-Training (2/2)

• Step 2: Fusion in TAGFormer & Cross-Stage Align
• Goal 2: Training within TAGFormer for semantic and structure fusion

• Objective # 2.1: Masked gate reconstruction

• Gate-level

• Predict masked gate type to capture gate structure

• Objective # 2.2: Netlist graph contrastive learning

• Circuit-level

• Differentiate graph functionality

• Objective # 2.3: Netlist graph size prediction

• Circuit-level

• Predict gate count to capture graph structure

153

Applications of NetTAG: 4 tasks

• Task 1: Combinational gate function identification

• Identify functional type (e.g., adder, multiplier) of each gate

• Task 2: Sequential state/data register identification

• Differentiate state registers and data path registers for each register

• Task 3: Endpoint register slack prediction

• Predict layout timing slack of each register

• Task 4: Overall circuit power/area prediction

• Predict layout power and area of the whole design

154

NetTAG Results & Discussion

• Scalability

• Performance per task all scale
up with model and data

• Demo
• Reasoning the netlist arithmetic function

• Next step: NetTAG-LLM alignment1 for
generative reasoning

[1] NetTAG: A Multimodal RTL-and-Layout-Aligned Netlist Foundation Model via Text-Attributed Graph, DAC’25.
155

Type II: Foundation AI Techniques for EDA

(Circuit Foundation Model)

Paradigm 2: Decoder-based circuit foundation models

How AI Assists EDA- Our Taxonomy

156

Decoder-based circuit foundation model

Open-Source

Close-Source

2025

2024

2023

R
TL

 C
o

d
e

Decoder-Based

RTLLM

VerilogEval

CreativeEval

RTL-repo

VHDL-Eval

ChipGPTV

VerilogEval v2

Chip-Chat

AutoChip

VGen

ChipNemo

MG-Verilog

VerilogCoder

CraftRTL

RTLSquad

BetterV

ChipGPT

RTLRewriter

LLM4DV

AutoSVA2

AssertLLM

ChIRAAG

Verilog
Reader

UVLLM

MEIC

RTLFixerHLSPilot

C2HLSC

GPTAIG
Chip

SpecLLM

DIVAS

ChatEDA

RAG-EDA

LADAC

Artisan

Analog
Xpert

Analog
Coder

LaMAGICH
LS

 C
o

d
e

RTL-Coder

AutoVCoder

Origen

AVIRIL

CodeV

ChipAlign

SynthAI

NL2SVA

O
p

t. Se
cu

ri
ty

Kande
et al.

NSPG

A
rc

h
it

e
ct

u
re

DeepRTL

HDL
Debugger

V
e

ri
fi

ca
ti

o
n

 &
 D

e
b

u
g

VeriAssist

FabGPT

DRC-Coder

Fl
o

w
&

La
yo

u
t

DAVE
(2020)

Pearce
et al.
(2021)

Analog
Genie

A
n

al
o

g

Self-
HWDebug

SecRT-
LLM

FVEval

Assertion
Bench

157

LLMs Enable Many Generative Applications

158

Decoder-based circuit foundation model

Open-Source

Close-Source

2025

2024

2023

R
TL

 C
o

d
e

Decoder-Based

RTLLM

VerilogEval

CreativeEval

RTL-repo

VHDL-Eval

ChipGPTV

VerilogEval v2

Chip-Chat

AutoChip

VGen

ChipNemo

MG-Verilog

VerilogCoder

CraftRTL

RTLSquad

BetterV

ChipGPT

RTLRewriter

LLM4DV

AutoSVA2

AssertLLM

ChIRAAG

Verilog
Reader

UVLLM

MEIC

RTLFixerHLSPilot

C2HLSC

GPTAIG
Chip

SpecLLM

DIVAS

ChatEDA

RAG-EDA

LADAC

Artisan

Analog
Xpert

Analog
Coder

LaMAGICH
LS

 C
o

d
e

RTL-Coder

AutoVCoder

Origen

AVIRIL

CodeV

ChipAlign

SynthAI

NL2SVA
O

p
t. Se

cu
ri

ty

Kande
et al.

NSPG

A
rc

h
it

e
ct

u
re

DeepRTL

HDL
Debugger

V
e

ri
fi

ca
ti

o
n

 &
 D

e
b

u
g

VeriAssist

FabGPT

DRC-Coder

Fl
o

w
&

La
yo

u
t

DAVE
(2020)

Pearce
et al.
(2021)

Analog
Genie

A
n

al
o

g

Self-
HWDebug

SecRT-
LLM

FVEval

Assertion
Bench

159

Generative AI: LLM for RTL Generation

• Input: natural language description

• Target design functionality.

• Module names, I/O names.

• Output: design in RTL code

Task: LLM-based RTL Generation

160

Image from Yongan Zhang, et al., MG-Verilog [LAD’24]

160

• LLM for hardware code optimization, debugging, verification, …

In addition to hardware code generation:

Benchmarking LLM for RTL Generation

161

50 design
problems

Four categories
1. Arithmetic Modules

2. Memory Modules

3. Control Modules

4. Miscellaneous
Modules

Example:
RTLLM2.0

Using commercial LLMs → circuit privacy concerns

1. Prompt engineering on commercial LLMs.

Using open-source LLMs → allows local deployment

2. LLMs fine-tuned on private datasets with instruction-code pairs

3. LLMs fine-tuned on open datasets with code only

4. LLMs fine-tuned on open datasets with instruction-code pairs

Challenge: How to get the dataset?

163

LLM for RTL Generation Methodologies

Basic flow using prompt engineering

• Input specification + structure analysis and design principles (in prompt)

• Feed prompt into LLMs → RTL code

• Incorporate the feedback from EDA tools into the flow for rewriting
164

Generation of RTL Code Dataset

• Data generation flow of RTLCoder, as an example

• Other works adopt similar methodologies for dataset generation

1. Generate diverse instructions (design specifications)

2. Generate high-quality reference code

3. Collect the instruction-code pairs for (supervised) fine-tuning
165

[1] RTLCoder: Fully Open-Source and Efficient LLM-Assisted RTL Code Generation Technique, TCAD’25.

Performance in RTL Generation

166

Other Directions Besides Code Generation

In addition to LLMs for Hardware (RTL or HLS) Generation:

• LLMs for Hardware (Code) Optimizations

• LLM for Hardware (Code) Verification

• LLMs for Hardware (Code) Security

• …

• LLM for Design Flow Automation

• LLM for Layout Design

• LLM for Analog Design

167

Challenges & Room for Improvement

1. Circuit Foundation Model Generalization and Scalability

2. Circuit Data Availability

3. Bridging the Gap Between Circuit Encoder and Decoder

168

Lack of Circuit? Generate Synthetic Circuits

[1] Towards Big Data in AI for EDA Research: Generation of New Pseudo Circuits at RTL Stage, ASPDAC’25

[2] SynCircuit: Automated Generation of New Synthetic RTL Circuits Can Enable Big Data in Circuits, DAC’25

• Solution: Generate synthetic pseudo-circuits for foundation model training

Synthetic

designs are

similar to

real designs
Pseudo-designs can boost AI

accuracy in IC prediction

Synthetic

designs reach

>100K cells

• Real circuit designs are private

• Synthetic circuit generation based

on graph generation models

• Synthetic circuits enable “big data”

169

Bridging the Gap Between Circuit
Encoder and Decoder

• An Encoder-Decoder framework with connectors

170

Takeaway: Paradigms of AI for EDA

171

	Default Section
	Slide 1: DAC Tutorial: Introduction to Foundation AI Model and Its EDA Applications
	Slide 2: Opportunities from Foundation Models
	Slide 3: Overview of This Tutorial

	Ang Li
	Slide 4: Basic Large Language Model (LLM) Techniques
	Slide 5: Outline of Session 1
	Slide 6: Outline of Session 1
	Slide 7: Issue with recurrent models
	Slide 8: Problems with classic Seq2Seq models
	Slide 9: Solution: attention mechanism
	Slide 10: How to compute attention?
	Slide 11: Why attention is so powerful?
	Slide 12: Attention as a general technique
	Slide 13: Replace recurrent with self-attention
	Slide 14: Self-attention computation
	Slide 15: Transformer
	Slide 16: Multi-head self-attention
	Slide 17: Encode sequence order
	Slide 18: Transformer decoder: self-attention
	Slide 19: Transformer decoder: encoder-attention
	Slide 20: Other tricks in Transformer
	Slide 21: Encoder – Decoder Transformer Architecture
	Slide 22: Encoder - Decoder Transformer Model
	Slide 23: Encoder Transformer Architecture
	Slide 24: Encoder Transformer Model
	Slide 25: Decoder Transformer Architecture
	Slide 26: Decoder Transformer Model
	Slide 27: Scaling up of LLMs
	Slide 28: Outline of Session 1
	Slide 29: LLM Training
	Slide 30: Pre-Training
	Slide 31: Pre-Training
	Slide 32: Pre-Training
	Slide 33: Pre-Training
	Slide 34: Pre-Training
	Slide 35: Instruction Fine-Tuning
	Slide 36: Instruction Fine-Tuning
	Slide 37: Instruction Fine-Tuning
	Slide 38: Instruction Fine-Tuning
	Slide 39: Reinforcement learning with human feedback (RLHF)
	Slide 40: Reinforcement learning with human feedback (RLHF)
	Slide 41: Reinforcement learning with human feedback (RLHF)
	Slide 42: Reinforcement learning with human feedback (RLHF)
	Slide 43: Reinforcement learning with human feedback (RLHF)
	Slide 44: What is Reinforcement Learning (RL)
	Slide 45: Reinforcement learning with human feedback (RLHF)
	Slide 46: Reinforcement learning with human feedback (RLHF)
	Slide 47: Reinforcement learning with human feedback (RLHF)
	Slide 48: Reinforcement learning with human feedback (RLHF)
	Slide 49: Performance comparison of pre-trained and finetuned
	Slide 50: Parameter Efficient Fine Tuning (PEFT)
	Slide 51: PEFT - Adapter
	Slide 52: PEFT - LoRA
	Slide 53: PEFT - QLoRA
	Slide 54: Prompt Engineering
	Slide 55: Prompt Engineering
	Slide 56: Prompt Tuning
	Slide 57: Outline of Session 1
	Slide 58: LLM Inference Procedure
	Slide 59: LLM Inference Procedure
	Slide 60: Tokenization
	Slide 61: Byte-Pair Encoding
	Slide 62: Byte-Pair Encoding
	Slide 63: LLM Inference Procedure
	Slide 64: LLM Inference Procedure
	Slide 65: LLM Inference Procedure
	Slide 66: LLM Inference Scenarios
	Slide 67: Break

	Wei Wen
	Slide 68: Multimodal Representation and Efficiency of Foundation AI Models
	Slide 69: Outline – Two Main Parts
	Slide 70: Multimodal Representation Techniques
	Slide 71: Multimodal Representation Techniques
	Slide 72: Multimodal Taxonomy in this Tutorial
	Slide 73: Multimodal Representation Techniques
	Slide 74: Multimodal Understanding -- Modeling
	Slide 75: Multimodal Understanding -- Flamingo
	Slide 76: Multimodal Representations -- CLIP
	Slide 77: Multimodal Representations -- MetaCLIP
	Slide 78: Multimodal Representation Techniques
	Slide 79: Multimodal Generation – Autoregressive Generation
	Slide 80: Image Tokenization: VQ-VAE
	Slide 81: Image Tokenization: VQ-GAN
	Slide 82: Diffusion and Modeling Unification
	Slide 83: Text Diffusion (and Multimodal Diffusion)
	Slide 84: Efficiency of Large Foundation Models
	Slide 85: Efficiency of Large Foundation Models
	Slide 86: Quantization for Efficiency – Taxonomy
	Slide 87: Quantization – Basics
	Slide 88: Quantization – Outlier Constraint
	Slide 89: Quantization – Outlier Constraint: Clipping
	Slide 90: Quantization – Outlier Constraint: Rotation
	Slide 91: Quantization – Outlier Constraint: Rescaling
	Slide 92: Efficiency of Large Foundation Models
	Slide 93: Low-rank + Quantization for Fine-tuning: QLoRA
	Slide 94: Efficiency of Large Foundation Models
	Slide 95: Sparsity / Pruning -- Patterns
	Slide 96: Sparsity / Pruning -- Methods
	Slide 97: SparseGPT
	Slide 98: Natively Sparse Models: Mixture of Experts
	Slide 99: Efficiency of Large Foundation Models
	Slide 100: Parallelism
	Slide 101: Speculative Decoding
	Slide 102
	Slide 103: Data Parallelism – ZeRO (in DeepSpeed)
	Slide 104: Data Parallelism – FSDP
	Slide 105: Model Parallelism
	Slide 106: Efficiency of Large Foundation Models
	Slide 107: Linear-Time Sequence Modeling – Linear Transformer
	Slide 108: Linear-Time Sequence Modeling – Mamba
	Slide 109: Linear-Time Sequence Modeling – xLSTM
	Slide 110: Break

	Zhiyao Xie
	Slide 111: Application of Foundation Models in EDA
	Slide 112: Challenges in Delivering Better Chips
	Slide 113: How AI Assists EDA - Our Taxonomy
	Slide 114: How AI Assists EDA - Our Taxonomy
	Slide 115: Explorations in Predictive AI Methods
	Slide 116: Predictive AI for EDA/Circuit Design
	Slide 117: Predictive AI for EDA/Circuit Design
	Slide 118: Example: Timing & Power Evaluation of RTL Code?
	Slide 119: Case 1: Early Timing Prediction at RTL-Stage
	Slide 120: Case 1: Early Timing Prediction at RTL-Stage
	Slide 121: Case 1: Early Timing Prediction at RTL-Stage
	Slide 122: Case 2: Efficient Power Model at RTL-Stage
	Slide 123: Case 2: Efficient Power Model at RTL-Stage
	Slide 124: Case 2: Efficient Power Model at RTL-Stage
	Slide 125: Case 2: Efficient Power Model at RTL-Stage
	Slide 126: How AI Assists EDA - Our Taxonomy
	Slide 127: Opportunities from Foundation Models
	Slide 128
	Slide 129
	Slide 130: How AI Assists EDA- Our Taxonomy
	Slide 131: Rethink Circuits from Data Perspective
	Slide 132: Paradigms of AI for EDA Techniques
	Slide 133: Encoder-based circuit foundation model
	Slide 134: Decoder-based circuit foundation model
	Slide 135: How AI Assists EDA- Our Taxonomy
	Slide 136: Encoder-based circuit foundation model
	Slide 137: Encoder Model at RTL Stage
	Slide 138: Multimodal Representation Learning, on RTL?
	Slide 139: Summary of Circuit Modalities
	Slide 140: RTL Circuit Encoder: CircuitFusion
	Slide 141: RTL Circuit Encoder: CircuitFusion
	Slide 142: Preprocessing: Split Circuit to Sub-circuits
	Slide 143: CircuitFusion Pre-Training (1/2)
	Slide 144: CircuitFusion Pre-Training (2/2)
	Slide 145: Design Quality Prediction Tasks at RTL
	Slide 146: Encoder-based circuit foundation model
	Slide 147: Encoder Model at Netlist Stage
	Slide 148: Multimodal Circuit Learning: RTL vs Netlist
	Slide 149: NetTAG: A Multimodal Netlist Encoder
	Slide 150: NetTAG Framework Overview
	Slide 151: 2. Self-Supervised Pre-Training
	Slide 152: 2. Self-Supervised Pre-Training (1/2)
	Slide 153: 2. Self-Supervised Pre-Training (2/2)
	Slide 154: Applications of NetTAG: 4 tasks
	Slide 155: NetTAG Results & Discussion
	Slide 156: How AI Assists EDA- Our Taxonomy
	Slide 157: Decoder-based circuit foundation model
	Slide 158: LLMs Enable Many Generative Applications
	Slide 159: Decoder-based circuit foundation model
	Slide 160: Generative AI: LLM for RTL Generation
	Slide 161: Benchmarking LLM for RTL Generation
	Slide 162: Example: RTLLM2.0
	Slide 163: LLM for RTL Generation Methodologies
	Slide 164: Basic flow using prompt engineering
	Slide 165: Generation of RTL Code Dataset
	Slide 166: Performance in RTL Generation
	Slide 167: Other Directions Besides Code Generation
	Slide 168: Challenges & Room for Improvement
	Slide 169: Lack of Circuit? Generate Synthetic Circuits
	Slide 170: Bridging the Gap Between Circuit Encoder and Decoder
	Slide 171: Takeaway: Paradigms of AI for EDA
	Slide 172

