
Efficient Deployment of Large Language
Models on Resource Constrained Edge

Computing Platforms

Ismail Bustany, Yiyu Shi, Jinjun Xiong

Introduction

The Success of Large Language Models

“As models scale, they approach or surpass task-specific

baselines, showing promise as universal systems for natural

language understanding”

-- By Scaling Law from OpenAI

3

LLM is powerful, but…

Vision: LLM hosted on cluster can achieve many tasks, but is

compromised by certain concerns:

• Offline → Internet is unavailable/unstable, but real-time reaction is

required (suicide detection, auto-drive)

• Data Privacy → Medical history, personal information

• AI Centralization → Only large corps can own models, data, and

computational resources (clusters)

• Customization → LLM needs to adapt users with distinct situations

4

Edge-based LLM can be a solution

5

Gap Between LLM and Edge Devices

6

A Successful Edge LLM should be able to …

7

Build Up Efficient LLM on Edge Devices

8

Section 1: Model Design

9

Section 2: Data Selection

10

Section 3: RAG-CiM

11

Section 4: NVCiM-PT

12

Section 5: Tiny-Align

13

Section 1:
Empirical Study

Empirical Study onto Edge LLM

15

Overview of Empirical Study

16

Concept Heads-up: Parameter Efficient Fine-
Tuning (PEFT)

17

Concept Heads-up: Retrieval-Augmented
Generation (RAG)

18

Concepts Heads-up: Retrieval-Augmented
Generation (RAG)

19

Highlight Findings

20

• As the Increasing of Task Difficulty: PEFT → RAG → PEFT.

• Having a huge user data corpus

• Burden the memory

• Ineffective learning

• No significant performance improvement in PEFT or RAG

• Compression Methods:

• Pruning: Not recommended (If used, heavy training might be required)

• Knowledge Distillation: Most stable

• Quantization: highest peak performance

Overview of

investigations on

Edge LLM

21

• Each Dataset: contain one task like classify movie tags or

summarize conversation content

• Normalized Accuracy (Difficulty):

• Classification: LaMP-2 < LaMP-3 < LaMP-1

• Generation: LaMP-6 < LaMP-5 < LaMP-7 < LaMP-4

• Classification in general is easier than generation

Evaluation Datasets and Their Difficulties

Task Difficulty Measurement

Optimal Model and Customization for LLMs on the Edge

22

• Easy classification task → small LLM with PEFT

• Difficulty increases → RAG + Quantized LLM

• Difficulty even higher → PEFT + Quantized LLM

Performance (Accuracy) comparisons between parameter learning and RAG

23

• In previous experiments, we find the optimal PEFT implement – LoRA.

• In the following investigations, we will dig in LoRA and information retrieval method – RAG.

• For LoRA, its rank (r) decides the number of trainable parameters, and alpha (a) decides how much impact that adapter on the

original LLM

Performance (classification

accuracy) for Pythia models

with different sizes on LaMP-

1, given alpha = rank = 16 or

alpha = 32 but rank increases

from 8 to 256

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

24

• Fixing alpha can benefit edge LLM PEFT more

• Setting alpha and rank to (16, 16) or (16, 32) can work in most cases.

Performance (classification

accuracy) for Pythia models

with different sizes on LaMP-

1, given alpha = rank = 16 or

alpha = 32 but rank increases

from 8 to 256

Choice of Parameter Efficient Fine-tuning (PEFT) Strategies

25

• Fixing alpha can benefit edge LLM PEFT more

• Setting alpha and rank to (16, 16) or (16, 32) can work in most cases.

Performance (classification

accuracy) for Pythia models

with different sizes on LaMP-

1, given alpha = rank = 16 or

alpha = 32 but rank increases

from 8 to 256

After deciding the appropriate PEFT settings, can we observe

any trend?

Identification of PEFT Trends for Edge LLMs

26

• More training data → NOT necessarily better performance

• Appropriate training time can be 3-4 hours

• Increasing training time only brings improvement on easiest task

Performance comparisons on multiple sized Pythia and OPT models on

different amounts of training data

Identification of PEFT Trends for Edge LLMs

27

• More training data → NOT necessarily better performance

• Appropriate training time can be 3-4 hours

• Increasing training time only brings improvement on easiest task

Performance comparisons on multiple sized Pythia and OPT models on

different amounts of training data

Now we’re done with PEFT, let’s move to RAG

Impact of User History Data Volume on RAG Performance

28

• Small size of data (i.e. 100) can support a decent RAG performance

• The RAG performance based on eight models is quite consistent across all different sizes of user history data

Performance improvement brought by RAG on four Pythia models and four miscellaneous (Misc)

models across different sizes of user history data

Comparison of Model Compression Techniques on Edge LLMs

29

• Knowledge distillation (Phi) can be

a safe option

• Different compression techniques

are good at different types of tasks.

• Shearing is a very promising

technique that preserves better

performance, but they are less

efficient at saving RAM compared

to quantization.

Performance comparisons between quantization (b), distillation (d), and pruning (e) LLMs.

Comparison between Compressed and Uncompressed Edge LLMs

30

• On challenging tasks (LaMP-7),

quantization can improve the model

performance via PEFT

• On the contrary, pruning can lower the

model performance (LaMP-7)

Performance comparisons between quantization (a - f) and pruning (g - i)

LLMs and their original versions.

Remark: what factors makes

quantization better than pruning for

LLM (Possible future research topic)

• Structure?

• Pretrained knowledge?

• Easy for fine-tuning?

Section 2:
Data Selection

Data Selection for LLM Personalization

32

Different Things to Consider

33

Computational Power

• Ten to hundreds times less than Server’s computational power

• Given the same time, limited tokens can be processed on edge

Limited Data Buffer

• DRAM is near to drain out by the model weights

• Data buffer for user-generated data can be small (i.e. 50MB)

• Data in-stream need to be process in real-time

Data Quality

• Low quality data contains few user-related information

• Learning from high quality data can save resources

uh oh it's twenty twenty-two.

however you'd like to.

no no and so you're not.

okay yep i can. okay.

let me hang on one second.

Low quality data

I have heard disease history,

but recently I am doing well.

When I get depressed for a

long time, then I usually will

have heard disease

High quality data

Example of Llama-7B on selected devices

Background and Issues

Select data from real-time streaming

• User-generated data continuously get into data buffer

• Streaming data can be temporally correlated within mini-batch

Maintain a compact data buffer

• Store data on disk, move data to DRAM when using them

• It takes time to retrieve the proper data, and

• Data movement can cost more latency

Fine-tune LLM with scarce data

• When we select high-quality data, and maintain a small volume

• Such data may not be enough to finetune LLM

34

Our Data Selection (Enrich by Data Synthesis)

35

On-device LLM personalization framework

• Form mini-batch and train on the fly

• Use a small data buffer and eliminate the necessity of

storing all streaming data

Data selection based on quality metrics

• A data replacement policy based on three quality metrics

• Save the most representative data

• Annotation is not needed in data replacement

Data synthesis for labeled data

• Utilize the embedded LLM as a data synthesizer

• Form semantically similar data from selected data

Data Selection

36

Metric 1: Entropy of Embedding

• Get embedding from pretrained LLM (PLM)

• Use Shannon Entropy, normalized by logistic sequence length

to estimate the amount of information in data

• Keep high information data

Metric 2: Domain Specific Score

• Get the input domain

• Count the domain-related tokens

• Keep the most domain-related input data

Metric 3: In-Domain Dissimilarity

• Within the same domain, we keep the most distinct data

• Reuse embeddings from PLM

Estimate the information volume, Keep domain-specific data, Drop correlated data

Extendable Lexicons

Metric 1

Metric 2

Metric 3

Data Selection Pipeline

37

When buffer is not full

• For a new input, get its embedding and domain tag

• Save it on the buffer

When buffer is full

• Decide whether discard input data or replace the data in the buffer

• Calculate its EOE, if larger than the current min EOE on buffer

• Calculate DSS given its domain tag

• Within the domain, calculate IDD

• Replace with the one whose EOE, DSS, and IDD are all smaller than the current input data

• If the current one is minimum, drop it

Overview of Data Selection and Data Synthesis

38

Performance and Conclusion

39

Performance on ALPACA dataset Performance on DOLLY dataset Performance on Prosocial dataset

• Demonstrate decent performances on various datasets

• Highlight the potential of on-device data selection towards efficient LLM learning based on LORA

Section 3:
RAG-CiM

Concept Recall: Retrieval-Augmented Generation (RAG)

41

• Mechanism:

• Store user-related data (sentence embedding, in 1D vector)

• Retrieve the data that mostly semantically relevant to user query (Retrieval algorithm like max inner product

search - MIPS) – computationally expensive

• Concatenate the retrieved data with query

• Rationale: Provide each query with more context information

RAG[1]

[1] Lewis, Patrick, et al. "Retrieval-augmented generation for knowledge-intensive nlp tasks." Advances in Neural Information Processing Systems 33 (2020): 9459-9474.

MIPS in RAG

42

• What to store:

• One user-generated text → Sentence Embedding Model → One

stored vector

• Many user-generated texts → Vectors → “Can formalize a matrix”

• Query:

• Original prompt → Sentence Embedding Model → One query

vector

• Find the appropriate user-generated text:

• Inner products between query vector and every store vector

• Rank the stored vectors based on the products

• Max Inner Product Search (MIPS)

• User-generated data:

• Save all the user-generated data →

Resource on edge is limited

• Manage data:

• Save on RAM: Easy for compute, but take

up resources for other applications

• Save on Disk: Data movement can lead to

latency (Longer than LLM Inference)

43

Background: Nonvolatile Memory (NVM) and Computing-in-Memory
(CiM)

RRAM FeFETMRAM

Emerging non-volatile devices

In
p

u
t
v
e

c
to

r

Output vector

Weight matrix

The crossbar array architecture

• Vector-matrix multiplication in one clock cycle

• Concept:

• Input Vector into each row [voltage]

• Matrix stored in each cross point [conductance]

• Output from each column [current]

• NVM

Sample Device Variations (Noise) Pattern

Pros and Cons of NVCiM

44

• MIPS: Vector-Matrix multiplication

• Vector: Query

• Matrix: Many vectors from user-generated text

• Maintained all user-generated text on NVM:

• Remove the latency due to data movement

• In crossbar array: Preform MIPS robustly and efficiency (energy and time)

Figure: MIPS accuracy when device variation

occurs during document embedding is written

45

Use NVCiM for RAG?

• Reduce the retrieval latency due

to the growing user history data

• Bridge the gap between NVCiM

and RAG acceleration

Figure: Implement RAG on NVCiM

Robust CiM-backed RAG (RoCR)

46

Data construction Noise-ware Training Contrastive Learning

47

• Core:

• Push semantically similar vectors closer

• Pull semantically distinct vectors further

• Construct Data for contrastive learning:

• Anchor: The original input (prompt)

• Positive: Semantically similar to the anchor

• Negative: Semantically distinct from the

anchor

• Rationale:

• Contrastive learning is used to train

embedding model that generate noise-resilient

vectors Figure: Improvement by RoCR

RoCR: Contrastive Learning

RoCR: Data Construction

48

Data construction Noise-ware Training Contrastive Learning

RoCR: Data construction

49

• Use dropout rate (r) to generate:

• Large r: similar embeddings

• Small r: distinct embeddings

• When data has explicit labels (CDE):

• Anchor: emb(prompt + proper label)

• Positive: emb(prompt + proper label, r = 0.1)

• Negative: emb(prompt + mismatching label)

• When data has no explicit labels(CDI)

• Anchor: emb(prompt)

• Positive: emb(prompt, r = 0.1)

• Negative: emb(prompt, r = 1 – 0.1)

• Rationale:

• Our data construction methods work with the contrastive

learning framework

• Handling the cases when the user-generated data with or

without have labels.

Figure: Examples of the two data construction

methods

RoCR: Noise-ware Training

50

Data construction Noise-ware Training Contrastive Learning

RoCR: Noise-ware Training

51

• Noise injection:

• [1, 0.75], [0.75, 0.5], [0.5, 0.25], [0.25, 0] (4

states in NVM), each range corresponding a

variance level, shown as Figure 1

• Concatenating with gaussian distribution

(default to 0.1)

• During training:

• Noise are added to embedding, shown as

Figure 2

• Rationale:

• When injected noise will not lead to undesirable

LLM generating, we stop training

Figure 1: Device non-ideality modeling for different real and

synthesized devices

Figure 2: Noise injection

Performance and Conclusion

52

Performance comparison between our framework and four baselines

• After noise mitigations done by our work and other baselines, the processed data stored on NVM, will be

used for RAG. Our work demonstrates decent RAG performance

• Highlight the potential of CiM architecture in optimizing LLM-related functions (like RAG)

Section 4:
NVCiM-PT

NVCiM-PT

54

• Scaled-search algorithm: Co-design circuit and algorithms

• Noise-aware Training: Mitigate the noise impact during NVM usage

• Representative Selection: Refine user data and formalize domain-specific data chunk

Background

55

Prefix-tuning VS Fine-tuning:

• Train only 0.1% parameters

• Saving resources

• Outperform fine-tuning in low-data settings

Challenges remain:

• Frequent domain shift

• Optimal sets of virtual tokens (OVT) → Specific Task

• Resource usage can be costly for edge

Soft Prompt (Virtual

Tokens)

Background

56

Prefix-tuning VS Fine-tuning:

• Train only 0.1% parameters

• Saving resources

• Outperform fine-tuning in low-data settings

Challenges remain:

• Frequent domain shift

• Optimal sets of virtual tokens (OVT) → Specific Task

• Resource usage can be costly for edge

Soft Prompt (Virtual

Tokens)

To overcome domain shift, can we train a set of virtual tokens

to adapt multiple domains?

57

Motivation

58

Impact of OVT Selection

• When optimal virtual tokens (OVT) can be selected properly

• Compare the performance when every input can have its OVT and when all inputs have the

same virtual tokens (Vanilla, P-t* v2, DEPT)

59

Challenges of Building OVT Bank

Instead of training OVT once domain shift, can we store and retrieve OVT to/from an OVT bank?

• Memory Consumption (a): RAM usage

• Latency (b): Data movement between disk and RAM if storing data on disk

Sentence Embedding VS Virtual Tokens

60

Sentence Embedding

• Entire sentence is converted

into a vector

Virtual Tokens :

• Consists of many tokens

• Each token is a vector

Retrieving sentence embedding

• Operation: vector * vector

• Rationale:

• Semantic information is easy to interpret

• Sentence embedding model converts textual input into sentence embedding

Finding optimal virtual tokens

• Sentence embedding model is not viable for virtual tokens

• Operation: “Between matrix (input) and matrices (OVTs)”

• Challenge:

• Semantic information is hidden

• Simple matrix-matrix multiplication provides limited meaning

OVT Bank based on NVCiM

61

Multi-scale (pooling):

• Scale = 1: Original token-level information

• Scale = 2: Medium across-token information

• Scale = 4: Long distance semantic information

Motivation:

• Why not just using scale 1: Only provides token-level information

• Seeking the multi-level vision

• Then synthesize (get average) of these “visions”

More Scale?

• Cost of chips (more scale → more resources are needed

• Balance and tradeoff:

• Tri-level: Small-Medium-Large covers enough vision

• More scales can lead to confusing information

“Simple matrix-matrix multiplication provides limited meaning”

Example: Scale 1 2 4

62

Co-design NVCiM and Prefix Tuning (PT)

Core components to enable

virtual tokens retrieval based on

CiM:

• Retrieval algorithm: Adapter-

level search (More

complicated than MIPS)

• Circuit operation: matrix-

matrix multiplication

63

Co-design: Retrieval algorithm

• High-level Description: Adapter-level search (More complicated than MIPS)

• Concept:

• Virtual Tokens (adapter), different from that in RAG, are integrated into a matrix.

• Instead of vector (input) and matrix (stored data) multiplication, matrix (input) and matrices (stored

adapters) multiplications are need

• Propose: Weighted Multi-Scale Dot Product search (WMSDP)

• Scale: average pooling adapters

• Weighted: on designed factors 1, 2, 4

• Dot Product: Between input matrix and every stored matrix

• Rationale: Information stored in adapter is more hidden, compared to sentence embedding data in RAG

64

Co-design: Circuit operation

• High-level description: matrix-matrix multiplication

• Input: Entire matrix instead of single vector. Each row is a

set of voltages

• Storage: Each OVT is copied into three scales 1, 2, 4

• Output: Sum and average, the similarity score is a single

value, for ranking

65

NVCiM-PT Framework

• Representative Selection:

• Echo back “Data Selection”

• Noise-aware Training:

• Echo back “RAG-CiM (RoCR)”

• Scaled Search Algorithm with Co-design

Noise-aware Training:

• During generating (prefix tuning) the OVT

• Adding noise to virtual tokens

• Use default CE loss

66

Performance and Conclusion

• Demonstrate decent performance on various datasets, multiple LLMs and different NVM devices

• CiM architecture has potential to optimize LLM-related functions (RAG, prefix tuning)

• Maybe we can do more in the future!

Performance comparison between our framework with existing noise mitigation methods

Section 5:
Tiny-Align

68

Cross-modal Alignment: Tiny-Align

Interaction beyond text:

• Personalization (speech pattern/behavior)

• Benefit users with typing difficulties

• Align audio with text-based LLM is

challenging

69

Cross-modal Alignment → ASR-LLM:

• ASR- Automatic Speech Recognition models

• Applications: People with dementia/aphasia/SLI

• What’s special: difficulties with typing, highly personalized interaction, privacy

Dementia Aphasia Specific Language Impairments (SLI)

70

Existing Approaches of Cross-modal Alignment

• Heads-up: Projectors are used to map ASR features into LLM

• Approach 1: Train the projector based on LLM inference

• Approach 2: Train the projector and the LLM at the same time

• Approach 3: Train the ASR and keep LLM unchanged

71

Existing Approaches of Cross-modal Alignment

• Heads-up: Projectors are used to map ASR features into LLM

• Approach 1: Train the projector based on LLM inference

• Approach 2: Train the projector and the LLM at the same time

• Approach 3: Train the ASR and keep LLM unchanged

Do they work on edge devices?

72

Motivation

Problems in existing approaches:

• Without ASR and LLM alignment, performance may

degrade

• Given small data volume (1k~5k samples), end-to-end

alignment may be unnecessary and burdensome

Core of the edge solution:

• Train only the projector with fast feedback

• Map ASR features into LLM recognizable content (input

embedding)

73

Preliminary Evaluations

• Compress LLM does not bring significant benefit

• Projector only (off-the-shelf) method outperforms in performance and efficiency

• Using off-the-shelf projectors do not work as well as optimized ones (Tiny-Align)

74

Preliminary Evaluations

• Compress LLM does not bring significant benefit

• Projector only (off-the-shelf) method outperforms in performance and efficiency

• Using off-the-shelf projectors do not work as well as optimized ones (Tiny-Align)

Further design and optimization

75

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

76

Cross-modal Alignment: Tiny-Align

Training:

• Input: Audio + Corresponding Text

• Output: Textual Response

Inference:

• Input: Audio + [Instruction]

• Output: Textual Response

77

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

78

Cross-modal Alignment: Tiny-Align

Normal Projectors in Cross-

Modal Alignment:

• Simple MLP

• Limited representational space

Ours (BridgeFormer):

• Add multi-head attentions, remove positional encoding

• Use MLP to reshape the input and output

• Rich representational space

79

Benefits of transformer-based projector (BridgeFormer):

• Capability: Better capture hidden semantic information

• Architecture: Correspond to the attention mechanisms in LLM (and possibly ASR, depending on ASR choice)

• Rationale: Flexible size, robust performance, better scalability (increase/decrease attention head)

• Budget: Tolerable increase in training workload

80

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

81

Mismatch dimensions between ASR and LLM

• ASR features have flexible embedding size

• LLM takes fixed embedding size

• Example:

• Audio: Noise, pause, word speed

• Text: Highly condensed information

• Audio >> Text

82

Dealing with mismatch dimensions (EmbedLink)

• Choose an embedding size wisely

• Smaller than ASR feature size, larger than

LLM embedding size

• From ASR, the dimension reduction can be done

by MLP in Bridgeformer

• To LLM, the dimension can be cased by padding

or truncation

• Default: 30 tokens (1 minute talking).

83

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

84

Choose the Appropriate ASR Model

• Input: speech, non-semantic input (i.e., music, mumble by aphasia patient)

• Generative ASR (i.e. AudioLDM) handles non-semantic input well, but 10 times heavier than lite feature-

based ASR (i.e. whisper and wav2vec)

• Evaluations also demonstrate the superior performance and efficiency of feature-based ASR.

85

Cross-modal Alignment: Tiny-Align

• BridgeFormer

• EmbedlLink

• Feature-based ASR

• Instruction Injection

86

Independent Instruction Provides Flexibility and Performance Improvement

• During projector training, instruction is excluded.

• In inference of ASR-LLM, instruction is concatenated with projector output

• Compared to instruction-included projector training, independent instruction injection provide more

flexibility.

87

Performance and Conclusion

• Our framework (Tiny-Align) demonstrates decent performance and efficiency on different audio datasets

• It can benefit people with Dementia, Aphasia, and Specific Language Impairment. Why? On-device learning for personalized audio input,

so the LLM can understand such audio input, and process with its strong reasoning capability

• Echo:

• RAG-CiM and NVCiM-PT: Can we use novel circuits and energy efficient hardware to further optimize Tiny-Align?

• Empirical Study and Data Selection: Can we use traditional devices and algorithms to optimize Tiny-Align?

Performance comparison between our framework with existing methods. Metrics including ROUGE-1

(R-1), ROUGE-L (R-L), and Convergence Time (C-T)

Walk Through

Key Takeaways

89

References

90

	Default Section
	Slide 1: Efficient Deployment of Large Language Models on Resource Constrained Edge Computing Platforms

	Introduction
	Slide 2: Introduction
	Slide 3: The Success of Large Language Models
	Slide 4: LLM is powerful, but…
	Slide 5: Edge-based LLM can be a solution
	Slide 6: Gap Between LLM and Edge Devices
	Slide 7: A Successful Edge LLM should be able to …
	Slide 8: Build Up Efficient LLM on Edge Devices
	Slide 9: Section 1: Model Design
	Slide 10: Section 2: Data Selection
	Slide 11: Section 3: RAG-CiM
	Slide 12: Section 4: NVCiM-PT
	Slide 13: Section 5: Tiny-Align

	Section 1
	Slide 14: Section 1: Empirical Study
	Slide 15: Empirical Study onto Edge LLM
	Slide 16: Overview of Empirical Study
	Slide 17: Concept Heads-up: Parameter Efficient Fine-Tuning (PEFT)
	Slide 18: Concept Heads-up: Retrieval-Augmented Generation (RAG)
	Slide 19: Concepts Heads-up: Retrieval-Augmented Generation (RAG)
	Slide 20: Highlight Findings
	Slide 21: Evaluation Datasets and Their Difficulties
	Slide 22: Optimal Model and Customization for LLMs on the Edge
	Slide 23
	Slide 24: Choice of Parameter Efficient Fine-tuning (PEFT) Strategies
	Slide 25: Choice of Parameter Efficient Fine-tuning (PEFT) Strategies
	Slide 26: Identification of PEFT Trends for Edge LLMs
	Slide 27: Identification of PEFT Trends for Edge LLMs
	Slide 28: Impact of User History Data Volume on RAG Performance
	Slide 29: Comparison of Model Compression Techniques on Edge LLMs
	Slide 30: Comparison between Compressed and Uncompressed Edge LLMs

	Section 2
	Slide 31: Section 2: Data Selection
	Slide 32: Data Selection for LLM Personalization
	Slide 33: Different Things to Consider
	Slide 34: Background and Issues
	Slide 35: Our Data Selection (Enrich by Data Synthesis)
	Slide 36: Data Selection
	Slide 37: Data Selection Pipeline
	Slide 38: Overview of Data Selection and Data Synthesis
	Slide 39: Performance and Conclusion

	Section 3
	Slide 40: Section 3: RAG-CiM
	Slide 41: Concept Recall: Retrieval-Augmented Generation (RAG)
	Slide 42: MIPS in RAG
	Slide 43: Background: Nonvolatile Memory (NVM) and Computing-in-Memory (CiM)
	Slide 44: Pros and Cons of NVCiM
	Slide 45: Use NVCiM for RAG?
	Slide 46: Robust CiM-backed RAG (RoCR)
	Slide 47: RoCR: Contrastive Learning
	Slide 48: RoCR: Data Construction
	Slide 49: RoCR: Data construction
	Slide 50: RoCR: Noise-ware Training
	Slide 51: RoCR: Noise-ware Training
	Slide 52: Performance and Conclusion

	Section 4
	Slide 53: Section 4: NVCiM-PT
	Slide 54: NVCiM-PT
	Slide 55: Background
	Slide 56: Background
	Slide 57: Motivation
	Slide 58: Impact of OVT Selection
	Slide 59: Challenges of Building OVT Bank
	Slide 60: Sentence Embedding VS Virtual Tokens
	Slide 61: OVT Bank based on NVCiM
	Slide 62: Co-design NVCiM and Prefix Tuning (PT)
	Slide 63: Co-design: Retrieval algorithm
	Slide 64: Co-design: Circuit operation
	Slide 65: NVCiM-PT Framework
	Slide 66: Performance and Conclusion

	Section 5
	Slide 67: Section 5: Tiny-Align
	Slide 68: Cross-modal Alignment: Tiny-Align
	Slide 69: Cross-modal Alignment  ASR-LLM:
	Slide 70: Existing Approaches of Cross-modal Alignment
	Slide 71: Existing Approaches of Cross-modal Alignment
	Slide 72: Motivation
	Slide 73: Preliminary Evaluations
	Slide 74: Preliminary Evaluations
	Slide 75: Cross-modal Alignment: Tiny-Align
	Slide 76: Cross-modal Alignment: Tiny-Align
	Slide 77: Cross-modal Alignment: Tiny-Align
	Slide 78: Cross-modal Alignment: Tiny-Align
	Slide 79: Benefits of transformer-based projector (BridgeFormer):
	Slide 80: Cross-modal Alignment: Tiny-Align
	Slide 81: Mismatch dimensions between ASR and LLM
	Slide 82: Dealing with mismatch dimensions (EmbedLink)
	Slide 83: Cross-modal Alignment: Tiny-Align
	Slide 84: Choose the Appropriate ASR Model
	Slide 85: Cross-modal Alignment: Tiny-Align
	Slide 86: Independent Instruction Provides Flexibility and Performance Improvement
	Slide 87: Performance and Conclusion

	Walk-through
	Slide 88: Walk Through
	Slide 89: Key Takeaways
	Slide 90: References
	Slide 91

