
Even Higher-Level
Synthesis

An Exploration of AI Hardware Accelerators using HLS4ML

Cameron Villone
HLS Technologist – Siemens EDA

2

Cameron Villone joined Siemens in August 2023 through the Atlas New
Graduate Program. Cameron graduated from Rochester Institute of
Technology with a Masters Degree in Electrical Engineering focusing on
Robotics, Embedded Systems, and Computer Vision. Cameron has held
previous student roles at General Motors and Texas Instruments. Cameron
started his Siemens journey by working as a product marketer for
Siemens’s low power solution, PowerPro. Cameron then grew to his
current role as part of the product management team as an HLS
Technologist for Catapult AI/NN.

Giuseppe
Di Guglielmo
Senior ASIC Engineer – Fermilab

3

Giuseppe Di Guglielmo is a Senior Engineer at Fermilab focused on
system-level design and AI/ML hardware acceleration. He develops
intelligent, ultra-low-latency detectors for harsh environments, including
ML-enabled, radiation-resistant chips for the LHC and quantum hardware
for cryogenic systems. With a Ph.D. in Computer Science and over a
decade of experience in high-level synthesis for ASIC/FPGA design, he
previously held research roles at Columbia University and Tokyo
University. He is an active contributor to open-source projects like ESP and
hls4ml.

Why Customized
Accelerators?

Inferencing Will Be Everywhere

AI can make embedded devices:
• More capable
• More secure
• Safer
• Faster

5

Higher specialization/Lower energy

Deploying AI in the Edge Systems

6

The Cloud A Gateway The Edge
Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Highest performance and efficiency are
achieved with specialized ASIC

implementation running on the edgeW
he

re
H

ow

ConsProsConsProsConsPros

Requires
development of
custom
hardware

Very Low power
and predictable
timing

Relies on
standard HW

Retains
Moderate
Flexibility

Performance
and Timing
issues for real-
time
applications

Very Flexible

Fixed to a
limited set of
network
architectures

Power
consumption
and timing
issues-

Easy to update

Software with bespoke
hardware accelerator

Software with generic
hardware accelerator

Pure Software
Implementation

Hardware vs Software

7

More and More Models

8

Yolo v1 – v8

ResNet

MobileNet

Many Many More….
• DenseNet

• AlexNet

• EfficientNet

• SqueezeNet

• VGG

• Inception

• ResNeXt

• More and More…..

Model Size of Best ImageNet Algorithm

9
Models have increased in computational load by >100X in 5 years

1

10

100

1000

10000

Model Compute Load

gi
ga

-fl
op

s

Inference Execution

10

Slow Performance Fast

H
ig

h
En

er
gy

 E
ffi

ci
en

cy

 L
ow

 E
ne

rg
y

CPU

GPU

TPU/
NPU

Custom

Can run any
inference

Runs limited set of
inferences

Complexity Drives Need for Customization

11

Slow Performance Fast

H
ig

h
En

er
gy

 E
ffi

ci
en

cy

 L
ow

 E
ne

rg
y

CPU

GPU

TPU/
NPU

Custom As neural networks increase
in size and complexity,
designs will be forced to
move to faster and more
efficient platforms

Drivers for ASIC Inferencing on the Edge

12

PrivacyLatency Security

Performance Efficiency

Drivers to the edge:
• Latency
• Security
• Privacy

Drivers to ASIC:
• Performance
• Efficiency

Inferencing on the Edge

• As AI algorithms get more complex, processors, software and off the shelf accelerators will
struggle to meet design requirements

• Technology trends are driving edge inferencing to be done on device

• Designing a bespoke accelerator can deliver the highest performance and efficiency

• High-Level Synthesis delivers the fastest path from machine learning framework to RTL

13

High-Level
Synthesis

What is
High-Level Synthesis?

What is High-Level Synthesis (HLS)?

15

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC
into technology optimized synthesizable RTL

High-Level
Synthesis

Generate Synthesizable RTL from C++

16

Optimized for a specific target technology or
FPGA device
Output in either VHDL or Verilog

HLS

Addition operator

Addition operator

Clock and reset

Analysis of C++ Descriptions

17

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,
int c, int d,
int &dout){

int t1,t2;
t1 = a + b;
t2 = t1 + c;
dout = t2 + d;

}

+a
b

+c

t1

+d

t2

dout

Analysis of C++ Descriptions

18

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,
int c, int d,
int &dout){

int t1,t2;
t1 = a + b;
t2 = t1 + c;
dout = t2 + d;

}

+a
b

+
c

t1

+d

dout

Parallelism

19

Parallelism is introduced using loop transformations
• Unrolling and pipelining

Unrolling drive parallelism
Pipelining also increases throughput and Fmax

Ar
ch

ite
ct

ur
e

C
on

st
ra

in
ts

data_t MAC (
data_t data_in[4],
coef_t coef_in[4]

) {

accu_t acc = 0 ;

for (int i=0;i<4;i++) {
acc += data_in[i] * coef_in[i] ;

}
return acc ;

}

+x

+
x

x

x

x

+

+

Loop Unrolling

20

Partially Unrolled - 2x

Fully Unrolled - 4x

Loop styles
• “for...”
• “while...”
• “do ... while”
Loop unrolling provides a way to
explore several micro-
architectures for a given design
Loops can be fully or partially
unrolled

Loop Pipelining

21

• A single stage pipeline, i.e. no pipelining, has no overlap
between loop executions

• Results in data being written every 4 clock cycles
• With no overlap, the resources (the adder) can be shared

between all C-Steps

Pipelining with II=2 Pipelining with II=1

Pipelining or Loop Unrolling

22

What is the optimal architecture? What makes the
most sense for your design?
Considerations:
• Data arrival and departure rates

• Do not create more compute capacity than the communication
channels can support

• Throughput vs. latency
• Is it lower latency or greater throughput more important

• Performance vs. area
• Smaller usually means slower

• HLS can give the data needed to make these decisions
• Gantt Chart
• Reports

Modeling Arbitrary Precision

Hardware design requires being able to specify any bit-width for variables,
registers, etc.

Need to model true hardware behavior and precision to meet specification and
save power/area
• Not limited to power-of-two bit-widths (1, 8, 16, 32, 64 bits)
• Integer, fixed-point, and floating-point support

Algorithmic C (AC) data types are C++ classes defined to provide storage for
precise hardware mapping in HLS

23

Saturating Math

24

62.5 0 1 1 1 1 1 1 . 1 0 0
+ 2.0 1 0 . 0 0 0
--
- 1.5 1 1 1 1 1 0 1 . 1 0 0

62.5 0 1 1 1 1 1 1 . 1 0 0
+ 2.0 1 0 . 0 0 0

63.875 0 1 1 1 1 1 1 . 1 1 1

Overflow:

Saturation:

Close to correct

Smaller is Better

25

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Operand Size vs Multiplier Area

Integer Floating Point

A one-bit integer multiplier is an
“and” gate

Data Sizes and Operators

26
Source: Nvidia DAC2017

Adder: floating
point is 37X
bigger than

integerMult: floating
point is 2.2X
bigger than

integer

Adder: 32-bit
is 3.8 X bigger

than 8-bit
Mult: 32-bit is
12 X bigger
than 8-bit

Energy and Operators

27
Source: Nvidia DAC2017

Adder: floating
point uses 9X

energy vs.
integer

Mult: floating
point uses 1.2X

energy vs.
integer

Adder: 32-bit
uses 3 X energy

vs. 8-bit

Mult: 32-bit uses
15.5 X energy vs.

8-bit32-bit data read
uses 170X more

energy than a
multiplication

Benefits of High-Level Synthesis

28
Synthesizable RTL

High-Level
Synthesis

High-Level Synthesis can help make this process easier, quicker, and flexible

Exploration through design constraints and synthesis settings, not manual re-
coding
• Evaluate more options than possible with a manual RTL design process
• Automated path from C/C++ or SystemC into technology optimized

synthesizable RTL

Custom Hardware

Introduction to
HLS4ML

History of AI/ML Designs w/HLS

30

Customers have been using HLS for AI/ML designs since 2017
Mostly for Convolutional Neural Networks customized in ASIC for Inferencing at the edge
Manually optimized bit-widths for lowest area and power
Manually designed custom C++ IP for HLS and adjusted constraints to meet PPA target
Mixture of pure dataflow layer connections and PE-Array architectures

Meeting designers where they are

31

Motivation
• A Python env is the de facto standard development platform for AI/ML neural network models
• Generating an efficient hardware implementation from a Python model is tedious and error-prone
• Validation of the accuracy and PPA at the end is often too late
• Recent advances have allowed quantized-aware training using the Python model…

• … but those precision details must be manually (re)coded into HDL model

Training

HLS4ML

Introduction
• Provide and efficient and fast translation of machine learning models from open-source

packages for training machine learning algorithms to High-Level Synthesis

Inspiration
• Originally inspired by the CERN Large Hadron Collider (LHC)
• ML applications have proven extremely useful for large dataset analysis.
• Taking data offline will allow for data to be calculated faster along with sorting data for storage
• Lower Latency, Realtime Detections

32

HLS4ML

Solution:
• ASIC and FPGAs have specialized

architecture compared to CPUs and
GPUs

• Specialized hardware is always able to
help with design constraints

• Specialized hardware tend to have
lower-power and faster results.

33

Frontends & Backends

34

Vivado/Vitis

oneAPICatapult

Quartus

Symbolic Expression

VivadoAccelerator

The Full Flow

35

C/C++

Synthesizable RTL

High-Level
Synthesis

Python

An Example

MNIST Dataset

37

The MNIST dataset is included in several popular
machine learning packages

Contains 70,000 images:
• Images are 28 x 28 pixels
• Pixels are 8-bit greyscale (1 color plane)

Typically separated training and validation:
• 60,000 images for training
• 10,000 images for verification

MNIST Neural Network

38

Conv2d

Dense Softmax
P(0) = 0.001
P(1) = 0.000
P(2) = 0.993
...

20 images

Batch
Norm

20 images

10 vectors

Accelerator Development

39

Profile the execution to determine functions that need acceleration

Convolution and dense layers consume 99.5% of the computational load (excluding test overhead)
These will benefit from acceleration

* System performance and power
measured for 64-bit Rocket Core RISC-V

So
ftw

ar
e

Pr
of

ile

Feature and Weight Quantization

40

Quantized Aware trainingPost Training Quantization

Pre-Trained
Model

Calibration
Dataset

Calibration/Tuning

Quantization

PTQ Quantized Model

Pre-Trained
Model

Full
Dataset

QAT Quantized Model

Quantization

Retraining/Tuning

Higher levels of abstraction

41

Catapult AI NN has a simplified Python API for configuring the project and generating the RTL
• Use config_for_dataflow to configure the project – using only the model and dataset variables
• Use generate_dataflow to generate the Catapult HLS C++ model, C++ testbench and build

scripts
• Use build to generate the RTL

Configure the project – passing in the TF model, test dataset and reference output
config_ccs = catapult_ai_nn.config_for_dataflow(model=model, x_test=x_test, y_test=y_test, num_samples=50, tech='asic',

asiclibs='saed32rvt_tt0p78v125c_beh’, clock_period=10, io_type='io_stream’)

Generate the C++ HLS model
hls_model_ccs = catapult_ai_nn.generate_dataflow(model=model,config_ccs=config_ccs)

Use Catapult Ultra to generate the RTL (batch mode)
Hls_model_ccs.build()

This example is available using the Catapult AI/NN Frontend for HLS4ML

Reports

42

Layer Report:
• HLS4ML Layer Summary – report shows python description of each layer
• nnet layer results – report shows PPA for each network layer

Layer Name Layer Class Input Type Input Shape Output Type Output Shape
------------ ------------- ------------------- ------------- ------------------- --------------

conv2d1 Conv2D ac_fixed<8,1,true> [14][14][1] ac_fixed<16,6,true> [4][4][5]
relu1 relu ac_fixed<16,6,true> [4][4][5] ac_fixed<16,6,true> [4][4][5]
flatten1 Reshape ac_fixed<16,6,true> [4][4][5] ac_fixed<16,6,true> [80]
dense1 Dense ac_fixed<16,6,true> [80] ac_fixed<16,6,true> [10]
softmax1 Softmax ac_fixed<16,6,true> [10] ac_fixed<16,6,true> [10]

Weight Type Bias Type
------------------- -------------------
ac_fixed<16,6,true> ac_fixed<16,6,true>

ac_fixed<16,6,true> ac_fixed<16,6,true>

This report is available using the Catapult AI/NN Frontend for HLS4ML

Understanding Precision

43

High-water mark of data and intermediate
values showed range of values was -37 to 56

• Float32 (+/-1038 is excessive)

Sensitivity analysis performed across varying
fixed-point representations

Value Range Analysis

44

For this example, a fixed-point precision of ac_fixed<16,6> resulted in 3
numerically different results compared to the floating-point Python output (after
quantization)

This tool is available using the Catapult AI/NN Frontend for HLS4ML

Customization

45

Measuring the accuracy of this model shows a slight improvement

Does the accuracy increase of 0.0001 warrant and increase in size?

Add refinements by layer

AREA SCORE: 72275AREA SCORE: 70125

Rethinking the Approach - QAT

46

Going back to the Python model, you can use QKeras to model the quantization affects at the
interfaces of the layers during training

Note that even though QKeras is applying quantization at the interfaces (feature, weights and
biases), the internal math operations are still performed as double precision whereas the fixed-
point C++ model will use bit-precise fixed-point operations

Transferring Your Network

47

model = Sequential()
model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))
model.add(layers.Conv2D(filters=5,

kernel_size=5, strides=3, name='conv2d1'))
model.add(layers.BatchNormalization(name='batchnorm1'))
model.add(layers.Activation('relu', name='relu1'))
model.add(layers.Flatten(name='flatten1'))
model.add(layers.Dense(10, name='dense1'))
model.add(layers.Activation('softmax', name='softmax1'))

model = Sequential()
model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))
model.add(QConv2D(filters=5, kernel_size=5, strides=3,

kernel_quantizer=quantized_bits(8, 1, 1, alpha=1),
bias_quantizer=quantized_bits(8, 1, alpha=1),
name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))
model.add(layers.Activation('relu', name='relu1'))
model.add(layers.Flatten(name='flatten1'))
model.add(QDense(

units=10,
kernel_quantizer=quantized_bits(8, 1, alpha=1),
bias_quantizer=quantized_bits(8, 1, alpha=1),
kernel_regularizer=tf.keras.regularizers.L1L2(0.0001),
activity_regularizer=tf.keras.regularizers.L2(0.0001),
name='dense1',

))
model.add(layers.Activation('softmax', name='softmax1'))

Transferring Your Network

48

8 7 6 5 4 3 2 1 0
8 0.9557 0.9537 0.9583 0.9509 0.953 0.9421 0.907 0.8966 0.098
7 0.9565 0.9552 0.9569 0.9576 0.9552 0.9459 0.941 0.9308 0.098
6 0.9497 0.952 0.9556 0.9496 0.9579 0.9495 0.9469 0.9133 0.2298
5 0.9608 0.957 0.9565 0.9532 0.952 0.9405 0.9238 0.9211 0.098
4 0.9537 0.9567 0.9519 0.9605 0.9539 0.9492 0.9344 0.9016 0.5703
3 0.9512 0.9549 0.9553 0.951 0.9513 0.9515 0.9408 0.9212 0.8202
2 0.953 0.915 0.9559 0.9576 0.9555 0.9501 0.9413 0.9099 0.7048

Model Accuracy – Quantizer Bits

49

Integer Bit

Fr
ac

tio
na

l B
its

Design Exploration and Optimizing

50

Discover the optimal design

• Make informed choices

• Find the smallest design with an optimal
accuracy

Key Points

• As the number of bits decrease

the size decreases
• The less bits moving through

ROM the less energy used

7x20 filter
Weight bits
In ROM

Bias bits
In ROM

Area – u2Model
Accuracy

Conv 2D
5x5 filter

1625651332550.96088int 5p
1375551159330.95677int 4p
112545995200.9157int 2p
125050995500.95794int 6p
37515375910.82020int 3p

Weight bits
In ROM

Bias bit
In ROM

Area – u2Model
Accuracy

Dense
10 Ch

104001308138880.96088int 5p
88001107030250.95677int 4p
7200905979730.9157int 2p
80001005966090.95794int 6p

2400302003930.82020int 3p

Meeting designers where they are

51

Ease of Use and Optimization
• High-Performance C++ IP Libraries for

better hardware
• Enhanced analysis and reporting
• Complete low-power design w/power

estimation and optimization
• Integrated Value-Range Analysis

(VRA) for detection of
quantization/overflow in C++

• C++ Testbench options to measure
numerical differences vs Python This example is available using the Catapult AI/NN Frontend for HLS4ML

How can we use
HLS4ML to make
our lives easier

• hls4ml is a Python package for machine learning inference as custom hardware
• Translate traditional open-source ML models into an HLS project

• Easy to install
• pip install hls4ml

• Open source
• https://github.com/fastmachinelearning/hls4ml
• https://fastmachinelearning.org/hls4ml

• Community
• Research laboratories, universities, and companies

What is hls4ml?

• Co-design = development loop between algorithm design, data collection, training, and hardware
implementation
• Large design search space
• Scientists and engineers with different expertise

54

Co-design with hls4ml

• High energy physics
• Large Hadron Collider (LHC) at CERN
• Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)

• Most collision “events” don’t produce interesting physics
• “Triggering” = filter events to reduce data rates to manageable levels

55

hls4ml origins

• To a large variety of scientific applications
• Low latencies (ms → ns)
• High throughput O(100TB/s)

• … including teaching material

56

hls4ml has grown

Neural learning for control, Institute of neuroinformatics, ETH Zurich

57

hls4ml community

• Converts from ML frameworks
• Internal representation
• Configuration to tune latency vs. resources, bit precision

• | hls4ml knobs | << | HLS knobs |

• Optimizers, e.g. merging layers
• Backends to HLS tools
• nnet_utils = C++ library of ML functionalities optimized for HLS

58

hls4ml architecture

59

hls4ml supports Catapult HLS

• Trade-off between latency and resource usage determined by the parallelization of the logic in each layer
• ReuseFactor = number of times a multiplier is used to do a computation

60

hls4ml – Parallelization

• ReuseFactor = 1, 2, 4
• Other configurations (ignore for now)

• Streaming Input, On-chip Weights, 32nm ASIC, 10ns Clock, Latency mode

61

Design space exploration via reuse factor

• As “customary” in custom hardware, we use quantized representation
• Floating-point computation is too resource intensive

• Precision = fixed point types
• ac_fixed, Algorithmic C Datatypes
• https://github.com/hlslibs/ac_types

• Operations are integer ops, but we can represent fractional values

• But we have to make sure we’ve used the correct data types!
• Post training quantization
• Quantization aware training

62

hls4ml – Quantization

1.1 computing’s energy problem (and what we can do about it), M. Horowitz 2014 High-performance hardware for machine learning, W. Dally 2015

• Post-training quantization (PTQ) = turning weights from float to fixed (or other quantized format)

63

Design space exploration via (post-
training) quantization

Fast inference of deep neural networks in FPGAs for particle physics, J. Duarte et al. 2018

• QAT improves on PTQ
• Taking into account quantization numerics and

learning around them
• More compact bit representation → Reduction area,

power, and latency
• QKeras https://github.com/google/qkeras, Brevitas

https://github.com/Xilinx/brevitas
• Easy to use, e.g. drop-in replacements for Keras

layers
• Dense → QDense
• Conv2D → QConv2D

64

Quantization-aware training (QAT)

Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors, C.N. Coelho et al. 2021

• hls4ml is a specialized compiler or transpiler
• Translate a high-level specification of a model a into HLS-ready code that implements the same algorithms

• User can choose
• Strategy for the implementation of the layers

• “Latency” for smaller model where likely the goal is high-parallelism, i.e. low reuse factor
• “Resource” for larger model and higher reuse factor

• IOType for the interfaces of layers and overall module
• “io_parallel” for data passed as arrays

• “io_stream” for data passed as latency-insensitive channels, e.g. ac_channels Algorithmic C Datatypes

65

hls4ml – Layer implementations and
interfaces

• ReuseFactor : <integer value>
• Controls the level of parallelism – 1 is the most parallel (smallest latency), 2 is half that…

• Precision : <fixed-point data type>
• Global or per-layer option configuring the precision for feature, weight and bias values

• Strategy : “latency” or “resource”
• Selects different C++ architectures for the layer implementations

• IOType : “io_parallel” or “io_stream”
• Passes data either as arrays or latency-insensitive channels, e.g.

• Part : <FPGA part>
• Identifies the specific FPGA family/part is used in downstream RTL synthesis

• ClockPeriod : <period in ns>
• Specifies the clock period for HLS

66

hls4ml configuration in summary

• hls4ml instantiates and configures layers of a model in a data flow architecture

67

hls4ml – Heterogenous dataflow
architecture

Applications and Techniques for Fast Machine Learning in Science, A. McCarn Deiana et al. 2022

68

hls4ml – Example

Applications

70

Survey of Big Data sizes in 2021

https://arxiv.org/abs/2202.07659

• Experiments at colliders typically have a silicon pixel
detector at the center
• Concentric rings tiled with sensors

• Silicon sensors are depleted of charge carriers by
high voltage

• When a charged particle from a collision passes
through, it creates e/h pairs

• Charge is read out and transferred off-detector
• Charge cluster information is used for physics analysis

offline

Silicon pixel detectors

Silicon Pixel Detector at CMS (LHC, CERN)

https://cms.cern/detector

• Connecting the dots between charge collected in different pixel
layers creates a particle track
• Detector should be low-mass so interactions in inactive material doesn’t

disrupt this trajectory

• Solenoid magnet immerses the pixel detector in a magnetic-
field, causing tracks to curve
• Very curved → low transverse momentum (low-pT)
• Almost straight → high transverse momentum (high-pT)

• Reconstructing vertices is critical
• Secondary vertices help identify particles: long, short, medium

lifetime?

72

Particle tracks and vertices

• LHC/CMS produces a lot of data
• New data every 25 ns (p-p collision)
• Physicists have to throw most of it away

• Physically and financially challenging
• Risk to throw away significant information

• Detector is continuously being sprayed with particles
• Need radiation tolerant on-detector electronics

• High voltage and low temperature requirements
• Up to -800 V, -35 C

73

Designing hardware for the LHC is challenging

• On-chip data filtering at rate (40 MHz)
• AI algorithms
• Reconfigurable algorithms
• Hybrid pixel detector

• Silicon sensor
• Pixelated ROIC

• Analog front-end + ADC
• AI in digital logic

74

Goal of the Smart Pixel team

• Inputs are cluster images projected onto y-axis and the
associated y0

• Three output categories
• high-momentum (> 200 MeV)
• low-momentum, negatively charged
• low-momentum, positively charged

• Simulated dataset of 800,000 clusters
• Classical training and testing set split 80%-20%
• Tensorflow/Keras, 200 epochs for training, 20 epochs of early

stopping, 1024 batch size, Adam optimizer

75

Neural network classifier (filter)

• On-chip data reduction at BX rate
• R&D for phase III CMS experiments
• pp-collision 40 MHz

• Integration of the ML algorithm as digital logic with the
analog front-end into the in the pixelated area

• Low-power 28nm CMOS
• Total power < 1 W/cm2

• Analog ~5 μW/pixel
• Digital ~1 μW/pixel

• Bandwidth saving
• 54.4% - 75.4%

76

Filtering in ASIC at LHC

Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning, J. Yoo et al. 2023

• Autoencoder (ML) on the detector front-end for data compression
• ASIC required due to radiation tolerance, handled through triple modular redundancy, and power requirements

• Reconfigurable ASIC to address: evolving LHC conditions (beam related), detector performance (noise,
dead channels), and updated performance metric (resolution, new physics signatures)

77

Data compression in ASIC at LHC

8’’ hexagonal silicon module
(1 out of ~27,000)

GF 65nm “ECON-D”

ValueMetric / requirement

40 MHzRate

200 MradTotal ionizing dose

107 cm2/sHigh energy hadron flux

65 nm LP CMOSTech. node

48 mWPower

1.2 nJEnergy / inf.

2.88 mm2Area

780kGates

50 nsLatency

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC, G. Di Guglielmo et al. 2021

Using QKeras, hls4ml, and Catapult
HLS
• reduced power by 50%, area by 80%,

and achieved 2x better performance
reference solutions by optimizing
compression and quantization

• Faster design cycle!

78

More ASIC applications with hls4ml and Catapult HLS

• Data compression for X-ray
microscopy (ptychography)

• Testing chip at GF 65nm
• Evaluation of algorithms
• PCA vs. Autoencoder
Up to 70x data compression at source with a
20% increase in pixel area

• Quantum readout at cryogenic
temperatures (4 Kelvin)

• Testing chip at GF 22nm
• SoC with ML accelerator
• Under testing

GF 65nm “SPROCKET”
“SPROCKET”

(testing board for ROCKET-chip family)

GF 22nm “CryoAI”

GF 22nm “CryoAI”
(wirebonded)

• Plasma instabilities when magnetic field lines
become distorted
• μ-seconds constraints

• Confinement loss → damage to the reactor
• One of the major roadblocks preventing lasting

thermonuclear fusion

79

A recent application for FPGA: Plasma control

HBT-EP Tokamak at Columbia University

http://sites.apam.columbia.edu/HBT-EP

Real-Time Instability Tracking with Deep Learning on FPGAs in Magnetic Confinement Fusion Devices, R. Forelli et al. 2023

• Open source + community
• Python ML package

• Reads and optimizes ML networks
• Library of optimized HLS-ready ML functions
• Dataflow pipeline of hardened layers
• Easier design space explore for ML

implementation
• Support of Catapult HLS

• Successful for both ASIC and FPGA
applications

80

hls4ml in summary

Thank you!

