Eve\n Higher-Level
SYIUESIE

An Exploration of Al Hardware Accelerators using HLS4ML

¢ |

TO SYSTEMS

SPONSOREDBY GEEMA %} a

Cameron Villone
HLS Technologist — Siemens EDA

Cameron Villone joined Siemens in August 2023 through the Atlas New
Graduate Program. Cameron graduated from Rochester Institute of
Technology with a Masters Degree in Electrical Engineering focusing on
Robotics, Embedded Systems, and Computer Vision. Cameron has held
previous student roles at General Motors and Texas Instruments. Cameron
started his Siemens journey by working as a product marketer for
Siemens’s low power solution, PowerPro. Cameron then grew to his
current role as part of the product management team as an HLS
Technologist for Catapult AI/NN.

SIEMENS

Giuseppe
Di Guglielmo

Senior ASIC Engineer — Fermilab

Giuseppe Di Guglielmo is a Senior Engineer at Fermilab focused on
system-level design and Al/ML hardware acceleration. He develops
intelligent, ultra-low-latency detectors for harsh environments, including
ML-enabled, radiation-resistant chips for the LHC and quantum hardware
for cryogenic systems. With a Ph.D. in Computer Science and over a
decade of experience in high-level synthesis for ASIC/FPGA design, he
previously held research roles at Columbia University and Tokyo
University. He is an active contributor to open-source projects like ESP and
his4ml.

2= Fermilab

Why Customized
Accelerators?

%
. \
Y = 2
\ /

TO SYSTEMS

- SI

SPONSORED BY (=

> @da

Inferencing Will Be Everywhere

Al can make embedded devices:
* More capable
» More secure

o Safer
 [aster A|@ED?i)

Al/Edge
l s - ;'.;/.o
/ \ o -
(.ﬁ . A Automotive

Deploying Al in the Edge Systems

., Highest performance and efficiency are
achieved with specialized ASIC

implementation running on the edge

Where

The Cloud A Gateway

How

TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

Hardware vs Software

Pure Software
Implementation

Software with generic
hardware accelerator

Software with bespoke
hardware accelerator

Pros Cons

Performance
and Timing
issues for real-
time
applications

Very Flexible

Easy to update

Pros

Retains
Moderate
Flexibility

Cons

Relies on
standard HW

Power
consumption
and timing
Issues-

Pros

Very Low power
and predictable
timing

Cons

Requires
development of
custom
hardware

Fixed to a
limited set of
network
architectures

More and More Models

Many Many More....

* DenseNet
* AlexNet
» EfficientNet

Yolo vl — v8 MobileNet

ot S~ « SqueezeNet
dmp WG e e ome S . VGG
N\\\\\\\\QQ o
e R o Mmoo * ResNext
Do ’ e More and More.....

ResNet

Model Size of Best ImageNet Algorithm

Model Compute Load

10000

1000

a 100
o
=
®
2
>

10

1

A A A D a® a9 O WO WO WO OO OO DD DN AN NN NN
B AN A AT AT AT AT AT AT QY SISOV N VR G\ VR VN R N R I L L N\ 4
SRS R SONUEPOE A R NN R A Y AN N R A Y N AN N R NS

NSRS N
o A o o)

Models have increased in computational load by >100X in 5 years

Inference Execution

Can run any
inference

<High Energy Efficiency Low Energ;>

@ Runs limited set of

inferences

]

Performance

Fast >

10

Complexity Drives Need for Customization

<High Energy Efficiency Low Energ;>

As neural networks increase
In size and complexity,
designs will be forced to
move to faster and more
efficient platforms

Performance

=

Drivers for ASIC Inferencing on the Edge

Drivers to the edge:
- Latency
- Security
« Privacy
Drivers to ASIC:
- Performance
- Efficiency

Inferencing on the Edge

* As Al algorithms get more complex, processors, software and off the shelf accelerators will
struggle to meet design requirements

* Technology trends are driving edge inferencing to be done on device
* Designing a bespoke accelerator can deliver the highest performance and efficiency

* High-Level Synthesis delivers the fastest path from machine learning framework to RTL

High-Level
Synthesis

00

@)
ee O ‘:_:--
‘O
O

What Is
High-Level Synthesis?

%
. \
Y = 2
\ /

TO SYSTEMS

- SI

SPONSORED BY (=

> @da

What is High-Level Synthesis (HLS)?

Automated path from C/C++ or SystemC
Into technology optimized synthesizable RTL

C/C++ or SystemC

High-Level
Synthesis

Syhthesizable RTL

15

Generate Synthesizable RTL from C++

Optimized for a specific target technology or ...
FPGA device

K>

Output in either VHDL or Verilog

reg(32,1,0,0,1)

/ Addition operator

A1)~
\Z(31.0 (56)
T reg(dout rsi idat)
BE10)
S
= D(31:0)

——{DRs(310)

Z(31.0) gt aal doutrsc.dat(31:0)

16 module add core (
17 clk, rst, a_rsc_dat, b_rsc_dat, dout_rsc_dat
18 1H
. 18 input clk;
§B8 add(int a, int B, int Gdout){ 26 input rst; GG
g ' HLS 21 input [31:6] a_rsc_dat; = Clock and reset
dout = a + b; 22 input [31:8] b_rsc_dat;

} 23 output [31:0] dout_rsc_dat;
24
25
26 / Interconnect Declarations
27 wire [31:8] a_rsci_idat;
28 wire [31:8] b_rsci_idat;
29 reg [31:08] dout_rsci_idat;
30 wire [32:0] nl_dout_rsci idat;
31 vom
32 always @(posedge clk) begin
i3 if (rst) begin ey
34 dout_rsci_idat < 32'b8; Addition operator
i5 end
36 else begin
7 dout rsci idat == nl_dout_rsci idat[31:0];
38 end

[] 39 end
by 40 assign nl_dout rsci idat = a_rsci_idat + b_rsci_idat;

41 endmodule 16

Analysis of C++ Descriptions

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

accumulate(a, b, a—» t1
c, d, b
&dout){

t

=

BOS
tl a + b; C —»
t2 tl + c; [
dout = t2 + d; @—»dout
A } d—

17

Analysis of C++ Descriptions

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

accumulate(a, b, a—» tl
c, d, b
&dout){
tl,t2; >
tl a + b; '@ dout
t2

i C
tl + c:
t2 + d; d —

6 dout
: by

Parallelism

Parallelism is introduced using loop transformations

* Unrolling and pipelining

Unrolling drive parallelism

Pipelining also increases throughput and F,,,

data_t MAC (
data_t data_in[4],
coef_t coef_in[4]
) {

accu_t acc = 0 ;
for (int 1=0;1<4;1++) {

}

return acc ;

acc += data_in[i] * coef_in[i] ;

Lo

!

Architecture

Constraints

Loy L

Loop Unrolling

Two iterations
per clock

v

Four iterations
per clock

suoneJay|

suonela)|

_“o

2
3

W N =~ o

Clock Cycles -
ACCUM loop in first din[31:0] ™
oop in firs .
nl call of the main loop din[95:64] —— ~ —
| I L +\ﬂ\ dout[31:0]
din[63:31] N — S+
| BT T
i din[127:96] g 0 g b
1 ACCUM loop in second \,
| 2 = call of the main loop 1-bit /1
Counter
3
Partially Unrolled - 2x
Clock Cycles -
ACCUM loop in first . . —~
call of the main loop din[31:0] /+ >7
din[63:31] Y —

(+) dout[31:0]
din[95:64] /A\} S Reg
din[127:96] (\"‘//

ACCUM loop in second

call of the main loop

WiIN =0

Fully Unrolled - 4x

Loop styles

“for...
“while...”
“do ... while”

unsigned int sum_fn (int d[4])
{

unsigned int sum = 0;
for (inti=0; i<4; i++) sum += d[i];
return sum;

}

Loop unrolling provides a way to
explore several micro-
architectures for a given design

Loops can be fully or partially

unrolled

20

Loop Pipelining

A single stage pipeline, i.e. no pipelining, has no overlap

between loop executions
Results in data being written every 4 clock cycles

With no overlap, the resources (the adder) can be shared
between all C-Steps

a—

e

Cc

K
|
A ®—:“'dout

327’-@-7&@—1

Pipelining with 11=2

*dout

@Y
b—

vy X
TR P
O @

%—P

~dout

_E@-‘“dout
L awe
e al

K
9

9]

Pipelining with 11=1

*dout

21

Pipelining or Loop Unrolling

What is the optimal architecture? What makes the
most sense for your design?

Considerations:

e Data arrival and departure rates == =

* Do not create more compute capacity than the communication
channels can support

ﬂL_Hj i
Eglﬂ 'HHT
U S

 Throughput vs. latency

1]

* Is it lower latency or greater throughput more important

* Performance vs. area
e Smaller usually means slower

e HLS can give the data needed to make these decisions
e Gantt Chart
* Reports

¢

22

Modeling Arbitrary Precision

Hardware design requires being able to specify any bit-width for variables,
registers, etc.

Need to model true hardware behavior and precision to meet specification and
save power/area

* Not limited to power-of-two bit-widths (1, 8, 16, 32, 64 bits)
* Integer, fixed-point, and floating-point support

Algorithmic C (AC) data types are C++ classes defined to provide storage for
precise hardware mapping in HLS

¢

23

Saturating Math

ac_fixed.h>
pi = 3.14;

OFFSET = 0.2;

main () {
fstream fptr;

fptr.open (“tmp.txt”, fstream::o
ac fixed<7,1, ,AC_TRN, AC_SAT>

+ 0.98

(
x[1] = OFFSET
fptr << x[i] <<endl;

}
fptr.close();

}

@ /’o\

1i=0;1<128;i++) {
sin(2

ut)

xil28]:

Overflow | \
/ \

Saturation

Overflow:

62.5 0111111.100
10.000

+2.0
-15

REALLY WRONG!
Saturation:

1111101.100

625 0111111.100
10.000

+2.0
63.875 0111111.111

Close to correct

Smaller 1s Better

Operand Size vs Multiplier Area
14000

12000

10000
A—

8000 c
B_

6000

4000 A one-bit integer multiplier is an
“and” gate

2000

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Integer —Floating Point

Lo

Data Sizes and Operators

Lo

Cost of Operations

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

—_—

Relative Area Cost

Relative Energy Cost

Area (um?)

36

=

100 1000 10000

1 10 100

1000

Source: Nvidia DAC2017

<

Adder: floating
point is 37X

Mult: floating
point is 2.2X
bigger than

Adder: 32-bit
Mult: 32-bit is
12 X bigger
than 8-bit

)

Energy and Operators

Operation: Energy (pJ)
8b Add 0.03
16b Add 00s Ml
32b Add 0.1

16b FP Add 0.4
32b FP Add 0.9

8b Mult 0.2
32b Mult 3.1

16b FP Mult 1.4

32b FP Mult 3.7
32b SRAM Read (8KB) 5

32b DRAM Read 640

10

100

1000

Adder: 32-bit

vs. 8-bit

o\

uses 3 X energy

uses 170X mor
energy than a
multiplication

10000

I 10 100

32-bit data read

e

1000

Source: Nvidia DAC2017

Benefits of High-Level Synthesis

High-Level Synthesis can help make this process easier, quicker, and flexible

Exploration through design constraints and synthesis settings, not manual re-

coding
» Evaluate more options than possible with a manual RTL design process
» Automated path from C/C++ or SystemC into technology optimized

synthesizable RTL

F o =
15 [?!‘/ /Mﬁfﬁﬁﬁ?ﬁ;ﬁé_{;:;

—_—

High-Level

SYUESS

—

= Ml —

(_ ® Synthesizable RTL Custom Hardware
W o9
-(’C':?‘;” '

Introduction to
HLS4ML

. tk N
r N
L N
N
. N
v .
Y e
' 4
\)
\ A

TO SYSTEMS

- Sl

SPONSORED BY (E[E[m)/

' &da

History of AI/ML Designs w/HLS

Customers have been using HLS for AI/ML designs since 2017

Mostly for Convolutional Neural Networks customized in ASIC for Inferencing at the edge
Manually optimized bit-widths for lowest area and power

Manually designed custom C++ IP for HLS and adjusted constraints to meet PPA target
Mixture of pure dataflow layer connections and PE-Array architectures

New Data
—
Trained Model

W
X5 2:::;1?:?;' 97

H/W Performance

W at the edge 3
@7; N e
? " ,

Meeting designers where they are

Motivation

* A Python env is the de facto standard development platform for Al/ML neural network models

* Generating an efficient hardware implementation from a Python model is tedious and error-prone
* Validation of the accuracy and PPA at the end is often too late

* Recent advances have allowed quantized-aware training using the Python model...
e ... but those precision details must be manually (re)coded into HDL model

test loss, test acc = model.evaluate(x test, y test)
print(f"Test Accuracy: {test _acc}")
313/313 [== i ======] - 15 2ms/step - loss: 0.0858 - accuracy: 0.9723
Test Accuracy: ©.9722999930381775
"l.“ Tensor | PYTLRCH Keras] QKeras|) ONNX
W W @ python
t.

31

HLS4ML hls 4 mi

Introduction

* Provide and efficient and fast translation of machine learning models from open-source
packages for training machine learning algorithms to High-Level Synthesis

Inspiration
» Originally inspired by the CERN Large Hadron Collider (LHC)

» ML applications have proven extremely useful for large dataset analysis. A
» Taking data offline will allow for data to be calculated faster along with sorting data for storage
» Lower Latency, Realtime Detections

\U\‘:L
O

HLS4ML

Keras
TensorFlow
PyTorch

compressed
model

Usual machine learning
software workflow

hls

HLS

conversion

4 mi

i

Co-processing kernel

\

tune configuratio
precision
reuse/pipeline

/

Custom firmware
design

Solution:

ASIC and FPGAs have specialized
architecture compared to CPUs and
GPUs

Specialized hardware is always able to
help with design constraints

Specialized hardware tend to have
lower-power and faster results.

(=)

Frontends & Backends

O° 2
> 3
h @ hl S 4 ml Quartus Vivado/Vitis

Symbolic Expression

VivadoAccelerator
Catapult oneAPI

The Full Flow

WNIST CHN definition

Can be sodified to incres

3.5, 7, square kernels only

. 5, and

of Laye or
supparted layers are Convad, Dense, and Flatten. Suppoted hernel sizes are

af channels

def wnist_sodel ()
¥ crests modol

model. add(Input shape=128, 28,1111
sodel sdd(Convanize, (5,51, use_b
madel.add(MaxPusling20ipoal_sizes(2,
¥ uas 5

nadel..add(MaxPool ing20ipaol_sizes(2,21}}
=odel. ada(Flattent))
#model.acd(Denee(500, se_bissaTry

model.add(Dense(19, use_bisssTrue, kernel_ini
ompile mode]

Feturn soh

fas=Trus, padding="ssme", activations'relu')}
21
model. acd(Conva0ls, (3,3), use_biassTrue, padding:

., kernel_initislizer:
model.add(Dense(20, use_bias=Truo, kernel_initislizers'normal', activations'sel

nodel.cospile(lossa'categarical crassentropy ,

L))

same, activations

tzersnormal fvations sof

optisirer='adan', metries=('accuracy’l)

Python

his 4 ml

index_type count;
inges_type 0

et sre, sre_aff

semory_Line ssrc, inde

type sre_offset, index_type size]

High-Level
Synthesis

Synthesizable RTL

35

An Example

TO SYSTEMS

; Ck —n
' N
N
“
. N
7 ‘
v = S
- b
\ /
A A

- Sl

SPONSORED BY

' @da

MNIST Dataset

¢

The MNIST dataset is included in several popular
machine learning packages

Contains 70,000 images:
®* Images are 28 x 28 pixels
®* Pixels are 8-bit greyscale (1 color plane)

Typically separated training and validation:
®* 60,000 images for training
® 10,000 images for verification

9
a
&

37

MNIST Neural Network

»»%- »»%

20 images 20 images

P(0) = 0.001
N .. NG .
P(2) = 0.993

@ 10 vectors
>

Accelerator Development

{ y
L

A
4
A
4

h 4

Software Profile

|

* System performance and power
measured for 64-bit Rocket Core RISC-V

Profile the execution to determine functions that need acceleration

Weight
1995.00 ms 100.0%
1995.00 ms
1962.00 ms
1962.00 ms
1962.00 ms
1752.00 ms 100.0%
1682.00 ms 100.0%
1678.00 ms 100.0%
1677.00 ms 100.0%
922.00 ms 55.3%
738.00 ms 44 2%
35.00 ms 0.5%
17.00 ms
15.00 ms

Self Weight

33.00 ms
Os

Os
210.00 ms
70.00 ms
4.00 ms
1.00 ms
18.00 ms
922.00 ms
738.00 ms
3.00 ms
2.00 ms
15.0 ms

Symbol Name
mnist(85781)
Main Thread 0x1af672
start
main (int, char *)
test_mnist(int, float*, float*)
sw_inference (float*, float *, float*)
load_image(int, float*)
load_weights(int, float*)
sw_auto_infer(int, float *, float*)

dense_sw(float*, float*, float *, float*, int, int, int, int)
conv2d_sw(float*, float*, float*, float®, float*, int, int, int, int, int, int)

softmax(int, float*)
check_results(int, float*, float*)
exit()

Convolution and dense layers consume 99.5% of the computational load (excluding test overhead)
These will benefit from acceleration

Feature and Weight Quantization

Post Training Quantization

Pre-Trained Calibration
\Y[oYo[<] Dataset

Calibration/Tuning

PTQ Quantized Model

Lo

Quantized Aware training

Full
Dataset

Pre-Trained
/,D Model

Quantization

Retraining/Tuning
QAT Quantized Model

Higher levels of abstraction

Catapult Al NN has a simplified Python API for configuring the project and generating the RTL
Use config_ for_ dataflow to configure the project — using only the model and dataset variables

» Use generate_dataflow to generate the Catapult HLS C++ model, C++ testbench and build
scripts

 Use build to generate the RTL

Configure the project — passing in the TF model, test dataset and reference output
config_ccs = catapult_ai_nn.config_for_dataflow(model=model, x_test=x_test, y test=y test, num_samples=50, tech="asic",
asiclibs="saed32rvt_ttOp78v125c_beh”, clock_period=10, io_type="io_stream”)

Generate the C++ HLS model
hls_model ccs = catapult_ai_nn.generate_dataflow(model=model,config_ccs=config_ccs)

Use Catapult Ultra to generate the RTL (batch mode)
HIs _model_ccs.build()

¢

This example is available using the Catapult AI/NN Frontend for HLS4ML

41

Reports

Layer Report:
 HLS4ML Layer Summary — report shows python description of each layer
* nnet layer results — report shows PPA for each network layer

Layer Name Layer Class Input Type Input Shape Output Type Output Shape
conv2dl Conv2D ac_fixed<8,1,true> [14][14]]1] ac_fTixed<16,6,true> [4114115]
relul relu ac_fixed<16,6,true> [4]114115] ac_fixed<16,6,true> [4]114115]
flattenl Reshape ac_fixed<16,6,true> [4114115]1 ac_fixed<16,6,true> [80]
densel Dense ac_fixed<16,6,true> [80] ac_Ffixed<16,6,true> [10]
softmaxl Softmax ac_fixed<16,6,true> [10] ac_fixed<16,6,true> [10]
Weight Type Bias Type

This report is available using the Catapult AI/NN Frontend for HLS4ML o
ac_fTixed<16,6,true> ac_fixed<l1l6,6,true>

ac_fTixed<16,6,true> ac_fixed<l16,6,true>

¢

42

Understanding Precision

100

90

80

70

60

50

40

30

20

10

16

15

14

13

Accuracy vs Integer Bits

12 11 10 9 8 7 6

—Fixed Point Saturating Fixed Point

5

4

3

¢é

High-water mark of data and intermediate
values showed range of values was -37 to 56

Float32 (+/-1038 is excessive)

Sensitivity analysis performed across varying
fixed-point representations

43

Value Range Analysis

For this example, a fixed-point precision of ac_fixed<16,6> resulted in 3
numerically different results compared to the floating-point Python output (after

guantization)

catapult_ai_nn.run_testbench(hls_model_ccs,0.005)

Weights directory: ./firmware/weights
Test Feature Data: ./tb_data/tb_input_features.dat
Test Predictions : ./tb_data/tb_output_predictions.dat
Processing 1input 0
Predictions
0 0 1.5e-05 9.2e-05 0 1le-06 0 0.99989 le-06 le-06
Quantized predictions
0000000 .9990234375 0 ©

Ref 0.885848 Ref(quantized) .8857421875 DUT 0.879883 <- MISMATCH
Ref 0.379353 Ref(quantized) .37890625 DUT 0.366211 <- MISMATCH
Ref 0.616644 Ref(quantized) .6162109375 DUT 0.628906 <- MISMATCH

INFO: Saved inference results to file: tb_data/csim_results.log

Error: A total of 3 differences detected between golden Python prediction and C++ pred
iction using threshold of ©.005

This tool is available using the Catapult AI/NN Frontend for HLS4ML

from sklearn.metrics import accuracy_score
print('Python Model Accuracy : {}'.format(accuracy score
print(‘C++ Model Accuracy : {}'.format(accuracy_score

313/313 [] - 0s 988us/step
Python Model Accuracy : 0.9576
C++ Model Accuracy : 0.9497

Customization

Add refinements by layer

TF lel, test t and reference

¥ Conrfigure the project -— passing 1n the I1IF model, tTest qQatasel

config ccs =
asiclibs="saed32rvt ttOp78v125c _beh', clock period=10, io type='io stream')

Refinements per layer — Precision
config ccs['HLSConfig'] ['LayerName']['inputl']['Precision'] = 'ac_ fixed<8,1, true>’

Measuring the accuracy of this model shows a slight improvement

Python Model Accuracy : 0.9576 Python Model Accuracy : 0.9576
C++ Model Accuracy : 0.9497 C++ Model Accuracy : 0.9498
AREA SCORE: 70125 AREA SCORE: 72275

Does the accuracy increase of 0.0001 warrant and increase in size?

catapult_ai nn.config for dataflow(model=model, x test=x test, y test=y test, num samples=50, tech='asic',

Rethinking the Approach - QAT

Going back to the Python model, you can use QKeras to model the quantization affects at the
interfaces of the layers during training

Note that even though QKeras is applying quantization at the interfaces (feature, weights and
biases), the internal math operations are still performed as double precision whereas the fixed-
point C++ model will use bit-precise fixed-point operations

Conv. 2d
((((((((
Stride=3

d
5x5 Batch RelLU FI Dense Softmax
Norm
s .
H
a [
] .
3 | :
’ .
.
14x14x1 2 N
.
| ;
L .
'C ' '
S Feature Extraction Classification
y y 1
p

L EHEEHEENEE

Transferring Your Network

model
model
model

model
model
model
model
model

= Sequential ()

.add(layers
-add(layers.

-.add(layers.
-add(layers.
-add(layers.
-.add(layers.
-.add(layers.

- Input(shape=(Fw,Fw, 1), name="i1nputl®))
Conv2D(filters=5,

kernel _size=5, strides=3, name="conv2dl®))
BatchNormalization(nhame="batchnorml®))
Activation("relu®, name="relul”))
Flatten(hame="flattenl"))

Dense(10, name="densel®))
Activation("softmax”, name="softmaxl®))

a7

Transferring Your Network

model
model
model

model
model
model
model

))

model

= Sequential ()

-add(layers. Input(shape=(Fw,Fw, 1), name="i1nputl®))
-add(QConv2D(filters=5, kernel size=5, strides=3,

kernel _quantizer=quantized_bits(8, 1, 1, alpha=1),
bias_quantizer=quantized_bits(8, 1, alpha=1),
name="conv2dl®))

-.add(layers.BatchNormalization(hame="batchnorml®))
.add(layers._Activation(“"relu®, name="relul®))
.add(layers.Flatten(hame="flattenl®))

-add(QDense(

units=10,

kernel _quantizer=quantized bits(8, 1, alpha=1),

bias quantizer=quantized bits(8, 1, alpha=1),

kernel regularizer=tf._keras.regularizers.L1L2(0.0001),
activity regularizer=tf.keras.regularizers.L2(0.0001),
name="densel”,

.add(layers.Activation("softmax®, name="softmaxl"))

Model Accuracy — Quantizer Bits

Fractional Bits

)

8 7
0.9557 0.9537
0.9565 0.9552
0.9497 0.952

0.957
C0.9567>

0.9512 0.9549

0.953

6
0.9583
0.9569
0.9556
0.9565
0.9519
0.9553
0.9559

Integer Bit
5 4
0.9509 0.953
0.9576 0.9552
0.9496
0.9532 0.952
0.9605 0.9539
0.951 0.9513
0.9576 0.9555

3
0.9421
0.9459
0.9495
0.9405
0.9492
0.9515
0.9501

49

Design Exploration and Optimizing

Conv 2D Model Area —u? Bias bits
5x5 filter Accuracy In ROM
8int 5p 0.9608 133255

7int 4p 0.9567 115933

7int 2p 0.915 99520

4int 6p 0.9579 99550

Qint 3p 0.8202 37591

Key Points

* As the number of bits decrease

the size decreases

* The less bits moving through
ROM the less energy used

Weight bits
In ROM
65 1625
55 1375
45 1125
50 1250
15 375
Dense Model
10 Ch Accuracy
8int 5p 0.9608
7int 4p 0.9567
7int 2p 0.915
4int 6p 0.9579
Qint 3p 0.8202

Discover the optimal design

* Make informed choices

» Find the smallest design with an optimal
accuracy

Area —u? Bias bit Weight bits
In ROM In ROM
813888 130 10400
703025 110 8800
597973 90 7200
596609 100 8000
200393 30 2400

50

Meeting designers where they are

Ease of Use and Optimization

* High-Performance C++ IP Libraries for
better hardware l JF[I

* Enhanced analysis and reporting

* Complete low-power design w/power
estimation and optimization

* Integrated Value-Range Analysis DO
(VRA) for detection of {f WYBTQIRet-GPD = netuatk mogel

void myproject () {

guantization/overflow in C++ nnet: :dense<layer2 t>(...);

nnet: :relu%ld}"l‘.i~']7;’ (...):

* C++ Testbench options to measure
numerical differences vs Python

¢

This example is available using the Catapult AI/NN Frontend for HLS4ML

51

How can we use
HLS4ML to make
our lives easier

%
. \
Y = 2
\ /

TO SYSTEMS

- SI

SPONSORED BY (=

> @da

What is his4dml?

hls4ml is a Python package for machine learning inference as custom hardware

* Translate traditional open-source ML models into an HLS project

Easy to install
e pip install hls4ml

Open source

Community
* Research laboratories, universities, and companies

SIEMENS EDA

Catapult® Synthesis
Release Notes

Software Version v2024.1
February 2024

Support for HLS4ML flow (beta)

Co-design with his4dml

®* (Co-design = development loop between algorithm design, data collection, training, and hardware

Implementation
* Large design search space
* Scientists and engineers with different expertise

" Domain scientist Data scientist ML engineer
Constraints, ... i h

ML engineer
(HW engineer)

" (ML engineer)

HW engineer

HW engineer

Clock frequency, his4ml directives for parallelization, ...

ML hyperparameters, quantization bits, ...

ML hyperparam'eters

QUANTIZATION
AWARE TRAINING

Accuracy, MSE, ...

Estimated resource, area, latency, ...

e I e Y wdjw

Y

Resource, area, latency, ...

CJ) INTEGRATION 1
1 SYN & PNR :

hisdml origins

* High energy physics
 Large Hadron Collider (LHC) at CERN
* Extreme collision frequency of 40 MHz — extreme data rates O(100 TB/s)
* Most collision “events” don’t produce interesting physics
* “Triggering” = filter events to reduce data rates to manageable levels

FPGA
N
Q{\/ o{\‘) \2
X 3 2 @
QQO \&(\ = &i‘q oL
A4

i)

A

Lo

his4ml has grown

®* To alarge variety of scientific applications

E‘ 104 T T T T T]
* Low latencies (ms — ns) =2 T LHe sensor Fast ML for Science
. Q benchmark tasks
* High throughput O(100TB/s) s
c 10 -
® ... including teaching material S
Qubit Readout
1010_ by]
EIC trigger — Plasma control
= LHC trigger
DUNE readout Electron microscopy
108 X-ray diffraction n
Neuro
o
1051 Magnet quench Internet-of-things .
Beam control
[r— e aevice

104 T]
102 9 ‘ 7 l 5 : 3 ‘ 1 I1 ‘3 5

Neural learning for control, Institute of neuroinformatics, ETH Zurich 10° 10~ 10° 10™ 10~ 10 10 10

Computation time [s]

hisdml community

GitHub

@Watch 54 ~ '239 Fork 375 - Starred 1.1k =
o

= Google Scholar hisami

resuits (0.04

Articles

4= slack

1 general

Welcome to his4ml's documentation! © Edit on GitHub

v £\ Get Notifications for All Messages

Welcome to hls4ml’s documentation!
About Members 973 Integrations Settings ‘

———————————| 470 Active Users
V) gman Fast l!g_c_hine I_._e_gming

FAST MACHINE
. LEARNING #
FOR SCIENCE
ey ety

is a Python package for machine learning inference in FPGAS. We create firmware D:z: ;;;3; ‘”,I: :;E:rlk Pl LA 4
: achine ing hi |
implementations of machine learning algorithms using high level synthesis language (HLS). We Inference on FPGAS

translate traditional apen-source machine leaming package models into HLS that can be configured

osshrw

SOUTHERN METHODIST UNIVERSITY

for vour use-case!

[README £ =
his4mi-tutorial: Tutorial notebooks for hls4ml W e S, B
There are several ways 1o run the tutorial notebooks: ast Machine Leamlng for Science
Online Workshop
. Co-located with 2023 International Conference on Computer-Akled Design (ICCAD)
Date: November 2, 2028

§1 launch |Binder

his4dml architecture

® Converts from ML frameworks
® Internal representation

® Configuration to tune latency vs. resources, bit precision
* | hls4ml knobs | << | HLS knobs |

® Optimizers, e.g. merging layers
®* Backends to HLS tools

® nnet_utils = C++ library of ML functionalities optimized for HLS

Utilities

T

Optimizers

Configuration l ‘\

Backend
Project writer \

Catapult HLS ["""“"j ¥ XILINX HLS J

A VITIS. gz

SIEMENS | #

hisdml supports Catapult HLS

Model Development

Optimization .
Quantization .
Training .

Model Conversion

Parallelism
BRAM Loc
I/O Style

C++ Model
Generation

hils 4 ml

H|gh Level Synthesis
Micro-Architecture

+ Memory Opt

» Pipelining

+ PPA

= ASIC or FPGA target

I[Catapult HLS I

ASIC RTL

RTL Synthesis
Timing Closure
Gate Netlist/
Bitstream

*®

C++ Model
Q_OQQ/D rameh s Iavers

L2090 &5 , .

R ’f ‘é

Q;x‘,jﬂ 3%

‘ G

Pre-HLS Validation IﬂCDesignChecker

- Static Checks

« Code Coverage
(100-1000x faster than
RTL coverage)

I ﬂCCoverage

|CFormaI Apps

FPGA RTL

==

bitstream

01001010
11010010
10001111
11110100

Post-HLS Validation
C vs RTL Simulation
RTL Coverage
UVM Support

his4ml| — Parallelization

Trade-off between latency and resource usage determined by the parallelization of the logic in each layer

ReuseFactor = number of times a multiplier is used to do a computation

mult

mult

mult

YYVY

mult

—> mult

vy

— mult

=

Fully parallel

reuse = 1
use 4 multipliers 1 time each

reuse = 2
use 2 multipliers 2 time each

reuse = 4 Fully serial |

use 1 multiplier 4 times

\ More resources,
Higher throughput,
Lower latency

Fewer resources,
Lower throughput,

Higher latency

Design space exploration via reuse factor

®* ReusefFactor=1,2,4

® Other configurations (ignore for now)
® Streaming Input, On-chip Weights, 32nm ASIC, 10ns Clock, Latency mode

Layer

hnet::zeropad2d_cl<input_t, layer5_t,config5> 631 868 113 22 1
et nv_2d_cl<layer5_t,layer2_t,config2> RF = I 75855] I -‘:-sz 5787 688 5099
et rmalize<layer2_t,result_t,configd> - 1924 156 \ 434 34 400 Latency

increases by

Layer Area Latency ‘ TotalPwr DynPwr LeakPwr faCtOl' Of 2

fnet: :zeropaczd_cl<input_t,layers_t,contigs> W o1 se || s 7 = while area

e e e RF=2 0 || B b)) E o [\ decreases
accordingly

Layer Area Latency TotalPwr DynPwr LeakPwr
nnet::zeropad2d cl<input t,layer5 t,config5> 631 868 102 11 92
Innet::conv_2d cl<layer5 t,layer2 t,config2> 40815 :‘:«,‘3] 5453 456 4997
nnet::normalize<layer2_ t,result_t,config4> 4947 T81 416 13 403

>

hisdml| — Quantization

Relative Energy Cost Relative Area Cost

s]
. . . 16b Add oos M
®* As “customary” in custom hardware, we use quantized representation 2. .
. 32b FP Add 09 |
* Floating-point computation is too resource intensive o
- - . . 16b FP Mult 11
® Precision = fixed point types B
32b DRAM Read 610 | NiA

* ac_fixed, Algorithmic C Datatypes
* https://qgithub.com/hlslibs/ac types

. , . ac_fixed<width bits, integer bits,signed>
® Operations are integer ops, but we can represent fractional values - J 9

® But we have to make sure we’'ve used the correct data types! 91—011':1@11101010:
. oL integer fractional
i Post tralnlng quantlzatlon <4 B

. . .. width
b Quantlzatlon aware tralnlng

1.1 computing’s enerqgy problem (and what we can do about it), M. Horowitz 2014 High-performance hardware for machine learning, W. Dally 2015

Design space exploration via (post-
training) quantization

® Post-training quantization (PTQ) = turning weights from float to fixed (or other quantized format)

Fast inference of deep neural networks in FPGAs for particle physics, J. Duarte et al. 2018

Scan integer bits
Fractional bits fixed to 8

Fixed-point precision

Scan fractional bits

hisdami
1.1 . "
Integer bits fixed to 6
1.0 hisaml
Tl
09] Full performance; Lo
o _
2 : at 6 integer bits
T 0.8 !
g | i Full performance
a & < . .
5 o7l I 3 os —at 8 fractional bits
S I g
?; | o] 0.7 !
0.6 1 I —=— g tagger o I
| —=— qtagger 2 !
0.5 i —=— w tagger 0.6 I —=— g tagger
: —a— 7 tagger 1 —=— qtagger
| —=— ttagger 0.5 1 | —=— wtagger
0.4 L, ' . !] 7 1 —=— ztagger
<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32> - | —=— ttagger

<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6>

Fixed-point precision

Quantization-aware training (QAT)

QUANTIZATION
) AWARE TRAINING [0
® QAT |mproves on PTQ - m

* Taking into account quantization numerics and
learning around them

* More compact bit representation — Reduction area,
power, and latency

* QKeras https://github.com/google/okeras, Brevitas
https://github.com/Xilinx/brevitas

* Easy to use, e.g. drop-in replacements for Keras

= (QKeras CPU
= (QKeras FPGA
= = Post-train quant.

o= —
o o
N ™
1 1

1.00 - —
L I
6 G Full performance

Ratio Model Accuracy / Baseline Accuracy

layers | at 6 bits
* Dense — QDense 0.96 - : !
e Conv2D — QConv2D I Il
0.94 ~ |
i i
' I
0.92 ~ | i
! I
0.90 — —
5 10 15

Automatic heterogeneous guantization of deep neural networks for low-latency inference on the edge for particle detectors, C.N. Coelho et al. 2021 Bitwidth

hlsdml — Layer implementations and
Interfaces

® hls4dml is a specialized compiler or transpiler
* Translate a high-level specification of a model a into HLS-ready code that implements the same algorithms

® User can choose

* Strategy for the implementation of the layers

e “Latency” for smaller model where likely the goal is high-parallelism, i.e. low reuse factor

_ Strategy
* ““Resource” for larger model and higher reuse factor
* 10Type for the interfaces of layers and overall module e

e “10_parallel” for data passed as arrays
® “j10_stream” for data passed as latency-insensitive channels, e.g. ac_channels Algorithmic C Datatypes

C.

hisdml configuration in summary

ReuseFactor : <integer value>
® Controls the level of parallelism — 1 is the most parallel (smallest latency), 2 is half that...

Precision : <fixed-point data type>
® Global or per-layer option configuring the precision for feature, weight and bias values

Strategy : “latency” or “resource”
® Selects different C++ architectures for the layer implementations

I0Type : “10_parallel” or “i10_stream”
® Passes data either as arrays or latency-insensitive channels, e.g.

Part : <FPGA part>
* |dentifies the specific FPGA family/part is used in downstream RTL synthesis

ClockPeriod : <period in ns>
®* Specifies the clock period for HLS

66

hisdm| — Heterogenous dataflow
architecture

* hls4ml instantiates and configures layers of a model in a data flow architecture

Dataflow architecture < spectrum > DPU/MPE/SA
]
Dedicated quantization for each buffer and layer DRAM
Dedicated Weights Buffers. I
0 s O e A ! D | DA |

| Weight Buffer |

E 13 T Compute Array -
: Matrix or Tensor Processing

Lo : : a R
- Dedicated Compute Architecture

|
Activation Functions/Pooling...

Dedicated Activation Buffers

d One size does not fit all
] Generate tailored hardware for a model

O Few-bit weights and activations b Matrix of Processing Elements
O Map each layer to HLS description 3 8int arithmetic, etc.
O Connect with FIFOs/streams O "Decisions at run time"

1 Stay on-chip
a Higher energy efficiency and bandwidth
1 "Decisions are design time"

Applications and Techniques for Fast Machine Learning in Science, A. McCarn Deiana et al. 2022

his4dml — Example

Configuration

Creation of a HLS model

Creation of a HLS project E
Prediction E

Synthesis E

from keras import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense (64, input shape=(16,), name='fcl'))
model.add (Activation(activation='relu’', name='relul'))
;.
model.fit (X train, y train)
y = model.predict (X test)
import hls4ml
config = hls4ml.utils.config from keras model(
model,
granularity="'name")
config['Model']['ReuseFactor'] = 2
config['Model']['Precision'] = 'ap fixed<16,6>"
config['Model']['Strategy'] = 'Latency'’
hls4ml model = hls4ml.converters.convert from keras model(
model,
hls config = config,
io_type='io_parallel')
hls4ml_model.compile()
y hls4ml = hls4ml model.predict (X test)

hls4ml model.build(csim=True, synth=True)

Model training

his4ml

Applications

TO SYSTEMS

; Ck —n
' N
N
“
. N
7 ‘
v = S
- b
\ /
A A

- Sl

SPONSORED BY

' @da

Survey of Big Data sizes in 2021

10M

71437 B e-mails sent from
2020-10 to 2021-09 (75 KB)

5

10k
5
2

log size (PB)

60307 B spam
e-mails(5 KB)

5.4k PBly
1000 D
5
2
300 PBly
100
5 720k hours/day

of video uploaded (7 GB)
2
10

https://arxiv.org/abs/2202.07659

100 T objects stored

in 83 up to 2021 (5 MB)

140 M hours/day

of streaming (1 GB)

=

3 Youlube

263 PB/y

2M
51.1k PBly g

4
o

240k photos/min.
shared in 2021

768/PBly
252 PBly @

98.83 M new users
+ 1.17 M paid subs in 2020
(1 GB and 400 GB, respectively)

500 EB
(total)

60 GB/s WLCG
transfers in 2018

HL-LHC real

1.9k PBly data expected in 2026
65k photos/min.
shared in 2021 LHC real
(2 MB) dala in 2018 800 PEY 1200 PBlY
HL-LHC Monte Carlo

~ a0 lpBry data expected in 2026
~ 160 PBly

68 PBly 62PByy 30+ Mwebpages LHC Monte Carlo

ol) datain 2018 ® Luca Clissa (2022)
player

Silicon pixel detectors

* Experiments at colliders typically have a silicon pixel
detector at the center
® Concentric rings tiled with sensors

e Silicon sensors are depleted of charge carriers by
high voltage

* When a charged particle from a collision passes
through, it creates e/h pairs

* Charge is read out and transferred off-detector

* Charge cluster information is used for physics analysis
offline

https://cms.cern/detector

Particle tracks and vertices

®* Connecting the dots between charge collected in different pixel
layers creates a particle track

® Detector should be low-mass so interactions in inactive material doesn’t
disrupt this trajectory

® Solenoid magnet immerses the pixel detector in a magnetic-
field, causing tracks to curve

* Very curved — low transverse momentum (low-p)
* Almost straight — high transverse momentum (high-p;)

®* Reconstructing vertices is critical

* Secondary vertices help identify particles: long, short, medium
lifetime?

72

Designing hardware for the LHC iIs challenging

N pixel
* | HC/CMS produces a lot of data LT e - -
e New data every 25 ns (p-p collision) I 1
* Physicists have to throw most of it away - 1 High
. . . . evel 1 Level
* Physically and financially challenging Rest of 40 MHz Trigger Trigger [
* Risk to throw away significant information cMS l]
® Detector is continuously being sprayed with particles LN Elghier =

12 ps latency

* Need radiation tolerant on-detector electronics

* High voltage and low temperature requirements
e Upto-800V,-35C

Goal of the Smart Pixel team

* On-chip data filtering at rate (40 MHz)
* Al algorithms Cow pr

clusters | I

i

* Reconfigurable algorithms |
. Alonasic High prclusters

e Hybrid pixel detector] 1 MHz
* Silicon sensor f

* Pixelated ROIC
* Analog front-end + ADC Rest of 20Mrz | S

« Alin digital logic chs |
LT L

High

Level
Trigger

>

Neural network classifier (filter)

®* Inputs are cluster images projected onto y-axis and the

associated y,
®* Three output categories /
* high-momentum (> 200 MeV) -B
* low-momentum, negatively charged ¢ i
* |ow-momentum, positively charged ‘ =
* Simulated dataset of 800,000 clusters @
® Classical training and testing set split 80%-20%
®* Tensorflow/Keras, 200 epochs for training, 20 epochs of early [NN Classifier]
stopping, 1024 batch size, Adam optimizer @

U

" {high-p_., low-p_, low-p_ }
.

W\ 62

O,

Filtering in ASIC at LHC

|
* On-chip data reduction at BX rate D), e H
* R&D for phase Ill CMS experiments H o~ =
e pp-collision 40 MHz e ‘ fg
* Integration of the ML algorithm as digital logic with the @ -
analog front-end into the in the pixelated area ML Classiter
* Low-power 28nm CMOS Catg:::;:‘:_"_s T il

* Total power < 1 W/cm?
* Analog ~5 uyW/pixel
* Digital ~1 pW/pixel resum 2 a

e Bandwidth saving
* 54.4%-75.4%

{high-p_ , low-p_, low-p_}

50 ym

logic pixels

25um A D,(

5 ym

ROIC
pixels

2
L silicon
digital sensor

analog
front-end

) ' 4
k.
|

y
4
A
b
B & |
W |
©

oy
{

Data compression in ASIC at LHC

®* Autoencoder (ML) on the detector front-end for data compression
* ASIC required due to radiation tolerance, handled through triple modular redundancy, and power requirements

®* Reconfigurable ASIC to address: evolving LHC conditions (beam related), detector performance (noise,
dead channels), and updated performance metric (resolution, new physics signatures)

8” hexagonal silicon module Metric / requirement Value
(1 out of ~27,000) Rate 40 MHz Using QKeras, his4ml, and Catapult
Total ionizing dose 200 Mrad HLS
High energy hadron flux 107 cm?/s * reduced power by 50%, area by 80%,

Tech. node 65 nm LP CMOS and achieved 2x better performance

Power 48 MW reference _solutlons by o_ptw_mzmg
: compression and quantization
Energy / inf. 1.2nd .
» Faster design cycle!

Area 2.88 mm?
Gates 780k
Latency 50 ns

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC, G. Di Guglielmo et al. 2021 @

More ASIC applications with hls4ml and Catapult HLS

» Data compression for X-ray « Quantum readout at cryogenic
microscopy (ptychography) temperatures (4 Kelvin)

* Testing chip at GF 65nm « Testing chip at GF 22nm

» Evaluation of algorithms e SoC with ML accelerator

* PCA vs. Autoencoder)

Up to 70x data compression at source with a * Under testing

20% increase in pixel area

L8 |

5nm * SPROCKET" &

IFERARAARAAMRE/

A recent application for FPGA: Plasma control

® Plasma instabilities when magnetic field lines
become distorted

®* u-seconds constraints

®* Confinement loss — damage to the reactor

http://sites.apam.columbia.edu/HBT-EP

®* One of the major roadblocks preventing lasting

- Shot 11446
thermonuclear fusion ;
Model Name PPCF23 Baseline QAT+Pruning Optimized
Image Resolution 128 x 64 128 x64 32x32
Conv layer filters {8,8,16} {8,8,16} {16,16,24}
Dense layer widths {256,64} {256,64} {42,64}
Total parameters 362,730 362,730 12,910 S s
Parameter precision PTQ, 18 bits QAT, 8 bits QAT, 7 bits g 4’ dominant 3/Ldominant " — chk (prea)
Sparsity none 80% 50% 3 = A
Bit Operations 6.74e13 X 45211 85 &

Phase (deg)

6

5
Time (ms)
Real-Time Instability Tracking with Deep Learning on FPGAs in Magnetic Confinement Fusion Devices, R. Forelli et al. 2023

hisdml in summary

. 51014_ I | I | |]
* Open source + community o, T LHe sensor Fast ML for Science
% benchmark tasks

* Python ML package = ol i

* Reads and optimizes ML networks o

e Library of optimized HLS-ready ML functions 10101 i

I 1 EIC trigger — Plasma control
» Dataflow pipeline of hardened layers -
. . DUNE readout
» Easier design space explore for ML 1081 . = i
implementation + .

* Support of Catapult HLS ol o ¥ o |

* Successful for both ASIC and FPGA Beam control
applications

104}~]

102 | | | | | |
(. 10° 1077 105 10% 10! 10! 108 10°
Nl Y Computation time [s]
O %

Security y.

Systems

d THE CHIPS
'TO SYSTEMS

SPONSORED BY

